Practical Approaches for Cryo-FIB Milling and Applications for Cellular Cryo-Electron Tomography (original) (raw)

References

  1. Koning RI, Koster AJ, Sharp TH (2018) Advances in cryo-electron tomography for biology and medicine. Annal Anatomy Anatomischer Anzeiger 217:82–96
    Article Google Scholar
  2. Russo CJ, Passmore LA (2016) Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 37:81–89
    Article CAS PubMed PubMed Central Google Scholar
  3. Al-Amoudi A, Chang JJ, Leforestier A, McDowall AW, Michel Salamin L, Norlén L, Richter K, Sartori Blanc N, Studer D, Dubochet J (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588
    Article CAS PubMed PubMed Central Google Scholar
  4. Al-Amoudi A, Studer D, Dubochet J (2005) Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150(1):109–121
    Article CAS PubMed Google Scholar
  5. Mahamid J, Tegunov D, Maiser A, Arnold J, Leonhardt H, Plitzko JM, Baumeister W (2019) Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc Natl Acad Sci 116(34):16866–16871
    Article CAS PubMed PubMed Central Google Scholar
  6. Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J (2019) Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell 177(7):1771–1780.e12
    Article CAS PubMed PubMed Central Google Scholar
  7. Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y, Sugie J, Pogliano K, Villa E (2019) The molecular architecture of engulfment during Bacillus subtilis sporulation. elife 8:e45257
    Article PubMed PubMed Central Google Scholar
  8. Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, Beck F, Plitzko JM, Nickelsen J, Engel BD (2019) Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat Plants 5(4):436–446
    Article CAS PubMed Google Scholar
  9. Weiss GL, Kieninger AK, Maldener I, Forchhammer K, Pilhofer M (2019) Structure and function of a bacterial gap junction analog. Cell 178(2):374–384.e15
    Article CAS PubMed PubMed Central Google Scholar
  10. Lopez-Garrido J, Ojkic N, Khanna K, Wagner FR, Villa E, Endres RG, Pogliano K (2018) Chromosome translocation inflates bacillus forespores and impacts cellular morphology. Cell 172(4):758–770.e14
    Article CAS PubMed PubMed Central Google Scholar
  11. Noble JM, Lubieniecki J, Savitzky BH, Plitzko J, Engelhardt H, Baumeister W, Kourkoutis LF (2018) Connectivity of centermost chromatophores in rhodobacter sphaeroides bacteria. Mol Microbiol 109(6):812–825
    Article CAS PubMed Google Scholar
  12. Mosalaganti S, Kosinski J, Albert S, Schaffer M, Strenkert D, Salomé PA, Merchant SS, Plitzko JM, Baumeister W, Engel BD, Beck M (2018) In situ architecture of the algal nuclear pore complex. Nat Commun 9(1):2361
    Article PubMed PubMed Central CAS Google Scholar
  13. Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM (2017) Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol 197(2):73–82
    Article CAS PubMed Google Scholar
  14. Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JKC, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355(6321):194–197
    Article CAS PubMed PubMed Central Google Scholar
  15. Rosenzweig ESF, Xu B, Cuellar LK, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright HN, Ronceray P, Plitzko JM, Förster F, Wingreen NS, Engel BD, Mackinder LC, Jonikas MC (2017) The eukaryotic co2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171(1):148–162.e19
    Article CAS Google Scholar
  16. Bäuerlein FJ, Saha I, Mishra A, Kalemanov M, Martínez-Sánchez A, Klein R, Dudanova I, Hipp MS, Hartl FU, Baumeister W, Fernández-Busnadiego R (2017) In situ architecture and cellular interactions of polyq inclusions. Cell 171(1):179–187.e10
    Article PubMed CAS Google Scholar
  17. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Kuhn Cuellar L, Förster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the hela cell nuclear periphery. Science 351(6276):969–972
    Article CAS PubMed Google Scholar
  18. Zhang J, Ji G, Huang X, Xu W, Sun F (2016) An improved cryo-fib method for fabrication of frozen hydrated lamella. J Struct Biol 194(2):218–223
    Article PubMed Google Scholar
  19. Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. elife 4:e04889
    Article PubMed PubMed Central Google Scholar
  20. Harapin J, Börmel M, Sapra KT, Brunner D, Kaech A, Medalia O (2015) Structural analysis of multicellular organisms with cryo-electron tomography. Nat Methods 12:634–636
    Article CAS PubMed Google Scholar
  21. Villa E, Schaffer M, Plitzko JM, Baumeister W (2013) Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23(5):771–777. Protein-carbohydrate interactions/biophysical methods
    Article CAS PubMed Google Scholar
  22. Wang K, Strunk K, Zhao G, Gray JL, Zhang P (2012) 3d structure determination of native mammalian cells using cryo-fib and cryo-electron tomography. J Struct Biol 180(2):318–326
    Article CAS PubMed PubMed Central Google Scholar
  23. Rigort A, Bäuerlein FJB, Villa E, Eibauer M, Laugks T, Baumeister W, Plitzko JM (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci 109(12):4449–4454
    Article CAS PubMed PubMed Central Google Scholar
  24. Marko M, Hsieh C, Schalek R, Frank J, Mannella C (2007) Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 4:215
    Article CAS PubMed Google Scholar
  25. Rajput NS, Luo X (2015) Chapter 3: FIB micro-/nano-fabrication. In: Qin Y (ed) Micromanufacturing engineering and technology, Micro and Nano Technologies, 2nd edn. William Andrew Publishing, Boston, pp 61–80
    Chapter Google Scholar
  26. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32(5):389–399
    Article CAS Google Scholar
  27. Chyr I, Steckl AJ (2001) Gan focused ion beam micromachining with gas-assisted etching. J Vacuum Sci Technol B 19(6):2547–2550
    Article CAS Google Scholar
  28. Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, Albert S, Engel BD, Rummel A, Smith AJ, Baumeister W, Plitzko JM (2019) A cryo-fib lift-out technique enables molecular-resolution cryo-et within native caenorhabditis elegans tissue. Nat Methods 16(8):757–762
    Article CAS PubMed Google Scholar
  29. Zhang J, Zhang D, Sun L, Ji G, Huang X, Niu T, Sun F (2019) VHUT-cryo-FIB, a method to fabricate frozen-hydrated lamella of tissue specimen for in situ cryo-electron tomography. bioRxiv. https://doi.org/10.1101/727149
  30. Mahamid J, Schampers R, Persoon H, Hyman AA, Baumeister W, Plitzko JM (2015) A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J Struct Biol 192(2):262–269
    Article CAS PubMed Google Scholar
  31. Stevie FA, Griffis DP, Russell PE (2005) Focused ion beam gases for deposition and enhanced etch. Springer US, Boston, MA, pp 53–72
    Google Scholar
  32. Diebolder C, Faas F, Koster A, Koning R (2015) Conical fourier shell correlation applied to electron tomograms. J Struct Biol 190(2):215–223
    Article CAS PubMed Google Scholar
  33. Strunk K, Wang K, Ke D, Gray J, Zhang P (2012) Thinning of large mammalian cells for cryo-TEM characterization by cryo-FIB milling. J Microsc 247(3):220–227
    Article CAS PubMed PubMed Central Google Scholar
  34. Medeiros JM, Böck D, Weiss GL, Kooger R, Wepf RA, Pilhofer M (2018) Robust workflow and instrumentation for cryo-focused ion beam milling of samples for electron cryotomography. Ultramicroscopy 190:1–11
    Article CAS PubMed Google Scholar
  35. Guo YS, Furrer JM, Kadilak AL, Hinestroza HF, Gage DJ, Cho YK, Shor LM (2018) Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Front Environ Sci 6:93
    Article Google Scholar
  36. Arnold J, Mahamid J, Lucic V, de Marco A, Fernandez JJ, Laugks T, Mayer T, Hyman AA, Baumeister W, Plitzko JM (2016) Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys J 110(4):860–869
    Article CAS PubMed PubMed Central Google Scholar
  37. Nahmani M, Lanahan C, DeRosier D, Turrigiano GG (2017) High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions. Proc Natl Acad Sci 114(15):3832–3836
    Article CAS PubMed PubMed Central Google Scholar
  38. Carlson DB, Evans JE (2011) Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy. JoVE 52:e2909
    Google Scholar
  39. Tuijtel MW, Koster AJ, Jakobs S, Faas FGA, Sharp TH (2019) Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci Rep 9(1):1369
    Article PubMed PubMed Central CAS Google Scholar
  40. Schellenberger P, Kaufmann R, Siebert CA, Hagen C, Wodrich H, Grünewald K (2014) High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143:41–51. SI: Correlative microscopy
    Article CAS PubMed PubMed Central Google Scholar
  41. Chang YW, Chen S, Tocheva EI, Treuner-Lange A, Löbach S, Søgaard-Andersen L, Jensen GJ (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11(7):737–739
    Article CAS PubMed PubMed Central Google Scholar
  42. Kaufmann R, Schellenberger P, Seiradake E, Dobbie IM, Jones EY, Davis I, Hagen C, Grünewald K (2014) Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett 14(7):4171–4175
    Article CAS PubMed PubMed Central Google Scholar
  43. Wolff G, Limpens RWAL, Zheng S, Snijder EJ, Agard DA, Koster AJ, Bárcena M (2019) Mind the gap: micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. J Struct Biol 208:107389
    Article PubMed Google Scholar
  44. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152(1):36–51
    Article PubMed Google Scholar
  45. Schorb M, Haberbosch I, Hagen WJH, Schwab Y, Mastronarde DN (2019) Software tools for automated transmission electron microscopy. Nat Methods 16(6):471–477
    Article CAS PubMed PubMed Central Google Scholar
  46. Marko M, Hsieh C, Moberlychan W, Mannella CA, Frank J (2006) Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc 222(1):42–47
    Article CAS PubMed Google Scholar
  47. Toro-Nahuelpan M, Zagoriy I, Senger F, Blanchoin L, Théry M, Mahamid J (2020) Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 17:50–54
    Article CAS PubMed Google Scholar
  48. Stokes DJ, Vystavel T, Morrissey F (2007) Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation. J Phys D Appl Phys 40(3):874–877
    Article CAS Google Scholar

Download references