Effective description of general extensions of the Standard Model: the complete tree-level dictionary (original) (raw)
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett.B 492 (2000) 98 [hep-ph/0007160] [INSPIRE].
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev.D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys.59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].
M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP08 (2013) 106 [arXiv:1306.4644] [INSPIRE]. ArticleADS Google Scholar
J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev.D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE]. ADS Google Scholar
J. de Blas, M. Chala and J. Santiago, Renormalization Group Constraints on New Top Interactions from Electroweak Precision Data, JHEP09 (2015) 189 [arXiv:1507.00757] [INSPIRE]. ArticleADS Google Scholar
A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.116 (2016) 011801 [arXiv:1508.00581] [INSPIRE]. ArticleADS Google Scholar
J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP12 (2016) 135 [arXiv:1608.01509] [INSPIRE]. ArticleADSMATH Google Scholar
A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP08 (2017) 123 [arXiv:1706.03783] [INSPIRE]. ArticleADS Google Scholar
J. de Blas et al., The Global Electroweak and Higgs Fits in the LHC era, in 5th Large Hadron Collider Physics Conference (LHCP 2017), Shanghai, China, 15–20 May 2017 [arXiv:1710.05402] [INSPIRE].
I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, arXiv:1706.08945 [INSPIRE].
I. Rosell, C. Krause, A. Pich, J. Santos and J.J. Sanz-Cillero, Tracks of resonances in electroweak effective Lagrangians, in 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017), Venice, Italy, 5–12 July 2017 [arXiv:1710.06622] [INSPIRE].
F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP09 (2000) 011 [hep-ph/0007316] [INSPIRE].
F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev.D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE]. ADS Google Scholar
J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable Effects of General New Scalar Particles, JHEP04 (2015) 078 [arXiv:1412.8480] [INSPIRE]. Article Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMATH Google Scholar
A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J.C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE]. ArticleADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett.B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE]. ArticleADS Google Scholar
J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE]. ArticleADS Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE]. ArticleADS Google Scholar
M. Porrati and R. Rahman, A Model Independent Ultraviolet Cutoff for Theories with Charged Massive Higher Spin Fields, Nucl. Phys.B 814 (2009) 370 [arXiv:0812.4254] [INSPIRE]. ArticleADSMATH Google Scholar
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys.B 234 (1984) 189 [INSPIRE]. ArticleADS Google Scholar
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, Phys. Lett.B 726 (2013) 697 [arXiv:1309.0819] [INSPIRE]. ArticleADSMATH Google Scholar
B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J.C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE]. ArticleADS Google Scholar
G. Buchalla, O. Catà, A. Celis and C. Krause, Comment on “Analysis of General Power Counting Rules in Effective Field Theory”, arXiv:1603.03062 [INSPIRE].
G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett.B 223 (1989) 425 [INSPIRE]. ArticleADS Google Scholar
V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich and J. Portoles, Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys.B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].
W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton-quark collisions, Phys. Lett.B 191 (1987) 442 [Erratum ibid.B 448 (1999) 320] [INSPIRE].
C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys.B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
LHCb collaboration, Test of lepton universality using B + → K + ℓ + ℓ − decays, Phys. Rev. Lett.113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
LHCb collaboration, Test of lepton universality with B 0 → K *0 ℓ + ℓ − decays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K (*) μ + μ − decays, JHEP06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0 → K *0 μ + μ −, Phys. Rev. Lett.111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
LHCb collaboration, Angular analysis of the B 0 → K *0 μ + μ − decay using 3 fb −1 of integrated luminosity, JHEP02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
LHCb collaboration, Angular analysis and differential branching fraction of the decay B 0 s → ϕμ + μ −, JHEP09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in b → sℓ + ℓ − transitions in the light of recent data, JHEP01 (2018) 093 [arXiv:1704.05340] [INSPIRE]. ArticleADS Google Scholar
W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev.D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE]. ADS Google Scholar
L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of b → sℓℓ decays, Phys. Rev.D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE]. ADS Google Scholar
M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J.C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE]. Article Google Scholar
A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev.D 96 (2017) 035026 [arXiv:1704.05672] [INSPIRE]. ADS Google Scholar
A. Crivellin, D. Müller, A. Signer and Y. Ulrich, Correlating lepton flavor universality violation in B decays with μ → eγ using leptoquarks, Phys. Rev.D 97 (2018) 015019 [arXiv:1706.08511] [INSPIRE]. ADS Google Scholar
A. Bevan et al., Standard Model updates and new physics analysis with the Unitarity Triangle fit, arXiv:1411.7233 [INSPIRE].
ETM collaboration, N. Carrasco et al., B-physics from Nf = 2 tmQCD: the Standard Model and beyond, JHEP03 (2014) 016 [arXiv:1308.1851] [INSPIRE].
S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett.B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE]. ArticleADS Google Scholar
S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP12 (2016) 059 [arXiv:1608.01349] [INSPIRE]. ArticleADS Google Scholar
F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Four and two-lepton signals of leptophilic gauge interactions at large colliders, PoS(CORFU2014)109 [arXiv:1505.00799] [INSPIRE].
F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Z’ limits, Phys. Rev.D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE]. ADS Google Scholar