Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria (original) (raw)
References
Morotomi, M., Guillem, J.G., LoGerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C, by Human Intestinal Microflora, Cancer Res. 50, 3595–3599. PubMedCAS Google Scholar
Takano, S., Matsushima, M., Erturk, E., and Bryan, G.T. (1981) Early Induction of Rat Colonic Epithelial Ornithine and _S_-Adenosyl-L-Methionine Decarboxylase Activities by _N_-Methyl-_N'_-nitro-_N_- nitrosoguanidine or Bile Salts, Cancer Res. 41, 624–628. PubMedCAS Google Scholar
Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of _N_-Methyl-_N'_-nitro-_N_-nitrosoguanidine in Rats, J. Natl. Cancer Inst. 53, 1093–1097. PubMedCAS Google Scholar
Reddy, B.S., Simi, B., Patel, N., Aliaga, C., and Rao, C.V. (1996) Effect of Amount and Types of Dietary Fat on Intestinal Bacterial 7-Alpha-Dehydroxylase and Phosphatidylinositol-Specific Phospholipase C and Colonic Mucosal Diacylglycerol Kinase and PKC Activities During Stages of Colon Tumor Promotion. Cancer Res. 56, 2314–2320. PubMedCAS Google Scholar
Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-Free and Conventional F344 Rats, Cancer Res. 37, 3238–3242. PubMedCAS Google Scholar
Mastromarino, A., Reddy, B.S., and Wynder, E.L. (1976) Metabolic Epidemiology of Colon Cancer: Enzymic Activity of Fecal Flora, Am. J. Clin. Nutr. 29, 1455–1460. PubMedCAS Google Scholar
Bayerdorffer, E., Mannes, G.A., Richter, W.O., Ochsenkuhn, T., Wiebecke, B., Kopcke, W., and Paumqartner, G. (1993) Increased Serum Deoxycholic Acid Levels in Men with Colorectal Adenomas, Gastroenterology 104, 145–151. PubMedCAS Google Scholar
Bayerdorffer, E., Mannes, G.A., Ochsenkuhn, T., Dirschedl, P., Wiebecke, B., and Paumqartner, G. (1995) Unconjugated Secondary Bile Acids in the Serum of Patients with Colorectal Adenomas, Gut 36, 268–273. PubMedCAS Google Scholar
Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45. ArticleCAS Google Scholar
Gilliland, S.E., and Speck, M.L. (1977) Deconjugation of Bile Acids by Intestinal Lactobacilli, Appl. Environ. Microbiol. 3, 15–18. Google Scholar
Masuda, N. (1981) Deconjugation of Bile Salts by Bacteroids and Clostridium, Microbiol. Immunol. 25, 1–11. PubMedCAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176. PubMedCAS Google Scholar
Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577. ArticlePubMedCAS Google Scholar
Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalysing the Oxidereduction of the 3-Alpha-, 7-Alpha- and 12-Alpha-Hydroxyl Groups in Cholic Acid, and the Dehydroxylation of the 7-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543. PubMedCAS Google Scholar
Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432. ArticlePubMedCAS Google Scholar
Midtvedt, T. (1967) Properties of Anaerobic Gram-Positive Rods Capable of 7α-Dehydroxylating Bile Acids, Acta Pathol. Microbiol. Scand. 71, 147–160. Article Google Scholar
Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197. PubMedCAS Google Scholar
Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7-Alpha-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286. ArticlePubMedCAS Google Scholar
Hirano, S., and Masuda, N. (1981) Transformation of Bile Acids by Eubacterium lentum, Appl. Environ. Microbiol. 42, 912–915. PubMedCAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr., 31, 243–247. CAS Google Scholar
Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in vitro and Subsequent Establishment in Germfree Rats, Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 79, 691–698. PubMedCAS Google Scholar
Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52. ArticleCAS Google Scholar
Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-Free Extract, FEBS Lett. 75, 163–165. ArticlePubMedCAS Google Scholar
Hayakawa, S., and Hattori, T. (1970) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133. ArticlePubMedCAS Google Scholar
Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7-Alpha-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510. PubMedCAS Google Scholar
Stellwag, E.J., and Hylemon, P.B. (1979) 7-Alpha-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333. PubMedCAS Google Scholar
Hirano, S., Nakama, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7-Alpha-Dehydroxylating Bile Acids, Appl. Environ. Microbiol. 41, 737–745. PubMedCAS Google Scholar
Takamine, F., and Imamura, T. (1995) Isolation and Characterization ofBBile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18. PubMedCAS Google Scholar
Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in vitro, Microbiol. Ecol. Health Dis. 11, 55–60. Article Google Scholar
Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in vitro, Microbiol. Immunol. 43, 893–397. PubMedCAS Google Scholar
narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (2000) Composition of Cecal Bile Acids in Ex-Germfree Mice Inoculated with Human Intestinal Bacteria, Lipids 35, 639–644. ArticlePubMedCAS Google Scholar
Itoh, K., Ozaki, A., Yamamoto, T., and Mitsuoka, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16 (in Japanese). CAS Google Scholar
Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zeutralbl. Bacteriol. Parasitenkd. Infektionskr. Hyg. I Orig. A 195, 455–469. CAS Google Scholar
Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Feces of Conventional Mice, Z. Versuchstierkd. 22, 173–178. PubMedCAS Google Scholar
Tserng, K.Y., and Klein, P.D. (1979) Bile Acid Sulfates: II. Synthesis of 3-Monosulfates of Bile Acids and Their Conjugates, Lipids 13, 479–486. Article Google Scholar
Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta 87, 141–147. ArticlePubMedCAS Google Scholar
Okuyama, S., Kokubun, N., Higashidate, S., Uemura, D., and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett., 1443–1446.
Kaneuchi, C., Watanabe, K., Terada, A., Benno, Y., and Mitsuoka, T. (1976) Taxonomic Study of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and ankersmit) Holdeman and Moore and of Related Organisms: Proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Sieven) com. nov., Int. J. Syst. Bacteriol. 26, 195–204. Google Scholar
Holdeman, L., Cato, E., and Moore, W. (1977) Anaerobic Laboratory Manual, 4th. edn. Ahaerobic Laboratory, Blacksburg, Virginia. Google Scholar
Fildes, P. (1920) New Medium for the Growth of B. influenza, Br. J. Exp. Pathol. 1, 129–130. Google Scholar
Cato, E., George, W., and Finegold, S. (1986) Genus Clostridium Prazmowski 1880, 23AL» in Bergey's Manual of Systematic Bacteriology, P. Sneath, N. Mair, M. Sharepe, and J. Holt, eds., vol. 2. pp. 1141–1200, The Williams & Wiliins Co., Baltimore. Google Scholar
Kikuchi, E., Miyamoto, Y., Narushima, S., and Itoh, K. (2002) Design of Species-Specific Primers to Identify 13 Species of Clostridium Harbored in Human Intestinal Tracts, Microbiol. Immunol. 46, 353–358. PubMedCAS Google Scholar
Miyamoto, Y., and Itoh, K. (1999) Design of Cluster-Specific 16S rDNA Oligonucleotide Probes to Identify Bacteria of the Bacteroides Subgroup Harbored in Human Feces, FEMS Microbiol. Lett. 177, 143–149. ArticlePubMedCAS Google Scholar
Grossman, N., and Ron, E.Z. (1975) Membrane-Bound DNA from Escherichia coli: Extraction by Freeze-Thaw-Lysozyme, FEBS Lett. 54, 327–329. ArticlePubMedCAS Google Scholar
Anzai, Y., Kudo, Y., and Oyaizu, H. (1997) The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas, Supports Synonymy of These Three Genera, Int. J. Syst. Bacteriol. 47, 249–251. ArticlePubMedCAS Google Scholar
Saitou, N., and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol. 4, 406–425. PubMedCAS Google Scholar
Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight matrix Choice, Nucleic Acids Res. 22, 4673–4680. ArticlePubMedCAS Google Scholar
Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J.A. (1994) The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations,. Int. J. Syst. Bacteroil. 44, 812–826. CAS Google Scholar
Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acids and Sterols by Clostridia (Fusiform Bacteria) in Wistar Rats, Lipids 34, 269–273. ArticlePubMedCAS Google Scholar
Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 265, 10925–10928. PubMedCAS Google Scholar
Grill, J.P., Manginot-Durr, C., Schneider, F., and Ballongue, J. (1995) Bifidobacteria and Probiotic Effects: Action of Bifidobacterium Species on Conjugated Bile Salts, Curr. Microbiol. 31, 23–27. ArticlePubMedCAS Google Scholar
Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2001) Clostridium hiranonis sp. nov., a Human Intestinal Bacterium with Bile Acid 7-Alpha-Dehydroxylating Activity, Int. J. Syst. Evol. Microbiol. 51, 39–44. PubMedCAS Google Scholar
Doerner, K.C., Takamine, F., LaVoie, C.P., Mallonee, D.H., and Hylemon, P.B. (1997) Assessment of Fecal Bacteria with Bile Acid 7-Alpha-Dehydroxylating Activity for the Presence of Bailike Genes, Appl. Environ. Microbiol. 63, 1185–1188. PubMedCAS Google Scholar
Wells, J.E., and Hylemon, P.B. (2000) Identification and Characterization of a Bile Acid 7-Alpha-Dehydroxylation Operon in Clostridium sp. Strain TO-931, a Highly Active 7-Alpha-Dehydroxylating Strain Isolated from Human Feces, Appl. Environ. Microbiol. 66, 1107–1113. ArticlePubMedCAS Google Scholar
Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2000) Assignment of Eubacterium sp. VPI 12708 and Related Strains with High Bile Acid 7-Alpha-Dehydroxylating Activity to Clostridium scindens and Proposal of Clostridium hylemonae sp. nov., Isolated from Human Faeces, Int. J. Syst. Evol. Microbiol 50 Pt 3, 971–978. PubMedCAS Google Scholar
White, B.A., Lipsky, R.L., Fricke, R.J., and Hylemon, P.B. (1980) Bile Acid Induction Specificity of 7-Alpha-Dehydroxylase Activity in an Intestinal Eubacterium Species, Steroids 35, 103–109. ArticlePubMedCAS Google Scholar
Ridlon, J.M., Kang, D.-J., and Hylemon, P.B. (2006) Bile Salt Biotransformation by Human Intestinal Bacteria, J. Lipid Red. 47, 241–259. ArticleCAS Google Scholar
Kitahara, M., Sakamoto, M., and Benno, Y. (2001) PCR Detection Method of Clostridium scindens and C. hiranonis in Human Fecal Samples, Microbiol. Immunol. 45, 263–266. PubMedCAS Google Scholar