Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria (original) (raw)

References

  1. Morotomi, M., Guillem, J.G., LoGerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C, by Human Intestinal Microflora, Cancer Res. 50, 3595–3599.
    PubMed CAS Google Scholar
  2. Takano, S., Matsushima, M., Erturk, E., and Bryan, G.T. (1981) Early Induction of Rat Colonic Epithelial Ornithine and _S_-Adenosyl-L-Methionine Decarboxylase Activities by _N_-Methyl-_N'_-nitro-_N_- nitrosoguanidine or Bile Salts, Cancer Res. 41, 624–628.
    PubMed CAS Google Scholar
  3. Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of _N_-Methyl-_N'_-nitro-_N_-nitrosoguanidine in Rats, J. Natl. Cancer Inst. 53, 1093–1097.
    PubMed CAS Google Scholar
  4. Reddy, B.S., Simi, B., Patel, N., Aliaga, C., and Rao, C.V. (1996) Effect of Amount and Types of Dietary Fat on Intestinal Bacterial 7-Alpha-Dehydroxylase and Phosphatidylinositol-Specific Phospholipase C and Colonic Mucosal Diacylglycerol Kinase and PKC Activities During Stages of Colon Tumor Promotion. Cancer Res. 56, 2314–2320.
    PubMed CAS Google Scholar
  5. Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-Free and Conventional F344 Rats, Cancer Res. 37, 3238–3242.
    PubMed CAS Google Scholar
  6. Mastromarino, A., Reddy, B.S., and Wynder, E.L. (1976) Metabolic Epidemiology of Colon Cancer: Enzymic Activity of Fecal Flora, Am. J. Clin. Nutr. 29, 1455–1460.
    PubMed CAS Google Scholar
  7. Bayerdorffer, E., Mannes, G.A., Richter, W.O., Ochsenkuhn, T., Wiebecke, B., Kopcke, W., and Paumqartner, G. (1993) Increased Serum Deoxycholic Acid Levels in Men with Colorectal Adenomas, Gastroenterology 104, 145–151.
    PubMed CAS Google Scholar
  8. Bayerdorffer, E., Mannes, G.A., Ochsenkuhn, T., Dirschedl, P., Wiebecke, B., and Paumqartner, G. (1995) Unconjugated Secondary Bile Acids in the Serum of Patients with Colorectal Adenomas, Gut 36, 268–273.
    PubMed CAS Google Scholar
  9. Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45.
    Article CAS Google Scholar
  10. Gilliland, S.E., and Speck, M.L. (1977) Deconjugation of Bile Acids by Intestinal Lactobacilli, Appl. Environ. Microbiol. 3, 15–18.
    Google Scholar
  11. Masuda, N. (1981) Deconjugation of Bile Salts by Bacteroids and Clostridium, Microbiol. Immunol. 25, 1–11.
    PubMed CAS Google Scholar
  12. Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176.
    PubMed CAS Google Scholar
  13. Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577.
    Article PubMed CAS Google Scholar
  14. Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalysing the Oxidereduction of the 3-Alpha-, 7-Alpha- and 12-Alpha-Hydroxyl Groups in Cholic Acid, and the Dehydroxylation of the 7-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543.
    PubMed CAS Google Scholar
  15. Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432.
    Article PubMed CAS Google Scholar
  16. Midtvedt, T. (1967) Properties of Anaerobic Gram-Positive Rods Capable of 7α-Dehydroxylating Bile Acids, Acta Pathol. Microbiol. Scand. 71, 147–160.
    Article Google Scholar
  17. Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197.
    PubMed CAS Google Scholar
  18. Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7-Alpha-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286.
    Article PubMed CAS Google Scholar
  19. Hirano, S., and Masuda, N. (1981) Transformation of Bile Acids by Eubacterium lentum, Appl. Environ. Microbiol. 42, 912–915.
    PubMed CAS Google Scholar
  20. Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr., 31, 243–247.
    CAS Google Scholar
  21. Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in vitro and Subsequent Establishment in Germfree Rats, Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 79, 691–698.
    PubMed CAS Google Scholar
  22. Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52.
    Article CAS Google Scholar
  23. Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-Free Extract, FEBS Lett. 75, 163–165.
    Article PubMed CAS Google Scholar
  24. Hayakawa, S., and Hattori, T. (1970) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133.
    Article PubMed CAS Google Scholar
  25. Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7-Alpha-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510.
    PubMed CAS Google Scholar
  26. Stellwag, E.J., and Hylemon, P.B. (1979) 7-Alpha-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333.
    PubMed CAS Google Scholar
  27. Hirano, S., Nakama, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7-Alpha-Dehydroxylating Bile Acids, Appl. Environ. Microbiol. 41, 737–745.
    PubMed CAS Google Scholar
  28. Takamine, F., and Imamura, T. (1995) Isolation and Characterization ofBBile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18.
    PubMed CAS Google Scholar
  29. Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in vitro, Microbiol. Ecol. Health Dis. 11, 55–60.
    Article Google Scholar
  30. Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in vitro, Microbiol. Immunol. 43, 893–397.
    PubMed CAS Google Scholar
  31. narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (2000) Composition of Cecal Bile Acids in Ex-Germfree Mice Inoculated with Human Intestinal Bacteria, Lipids 35, 639–644.
    Article PubMed CAS Google Scholar
  32. Itoh, K., Ozaki, A., Yamamoto, T., and Mitsuoka, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16 (in Japanese).
    CAS Google Scholar
  33. Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zeutralbl. Bacteriol. Parasitenkd. Infektionskr. Hyg. I Orig. A 195, 455–469.
    CAS Google Scholar
  34. Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Feces of Conventional Mice, Z. Versuchstierkd. 22, 173–178.
    PubMed CAS Google Scholar
  35. Tserng, K.Y., and Klein, P.D. (1979) Bile Acid Sulfates: II. Synthesis of 3-Monosulfates of Bile Acids and Their Conjugates, Lipids 13, 479–486.
    Article Google Scholar
  36. Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta 87, 141–147.
    Article PubMed CAS Google Scholar
  37. Okuyama, S., Kokubun, N., Higashidate, S., Uemura, D., and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett., 1443–1446.
  38. Kaneuchi, C., Watanabe, K., Terada, A., Benno, Y., and Mitsuoka, T. (1976) Taxonomic Study of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and ankersmit) Holdeman and Moore and of Related Organisms: Proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Sieven) com. nov., Int. J. Syst. Bacteriol. 26, 195–204.
    Google Scholar
  39. Holdeman, L., Cato, E., and Moore, W. (1977) Anaerobic Laboratory Manual, 4th. edn. Ahaerobic Laboratory, Blacksburg, Virginia.
    Google Scholar
  40. Fildes, P. (1920) New Medium for the Growth of B. influenza, Br. J. Exp. Pathol. 1, 129–130.
    Google Scholar
  41. Cato, E., George, W., and Finegold, S. (1986) Genus Clostridium Prazmowski 1880, 23AL» in Bergey's Manual of Systematic Bacteriology, P. Sneath, N. Mair, M. Sharepe, and J. Holt, eds., vol. 2. pp. 1141–1200, The Williams & Wiliins Co., Baltimore.
    Google Scholar
  42. Kikuchi, E., Miyamoto, Y., Narushima, S., and Itoh, K. (2002) Design of Species-Specific Primers to Identify 13 Species of Clostridium Harbored in Human Intestinal Tracts, Microbiol. Immunol. 46, 353–358.
    PubMed CAS Google Scholar
  43. Miyamoto, Y., and Itoh, K. (1999) Design of Cluster-Specific 16S rDNA Oligonucleotide Probes to Identify Bacteria of the Bacteroides Subgroup Harbored in Human Feces, FEMS Microbiol. Lett. 177, 143–149.
    Article PubMed CAS Google Scholar
  44. Grossman, N., and Ron, E.Z. (1975) Membrane-Bound DNA from Escherichia coli: Extraction by Freeze-Thaw-Lysozyme, FEBS Lett. 54, 327–329.
    Article PubMed CAS Google Scholar
  45. Anzai, Y., Kudo, Y., and Oyaizu, H. (1997) The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas, Supports Synonymy of These Three Genera, Int. J. Syst. Bacteriol. 47, 249–251.
    Article PubMed CAS Google Scholar
  46. Saitou, N., and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol. 4, 406–425.
    PubMed CAS Google Scholar
  47. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight matrix Choice, Nucleic Acids Res. 22, 4673–4680.
    Article PubMed CAS Google Scholar
  48. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J.A. (1994) The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations,. Int. J. Syst. Bacteroil. 44, 812–826.
    CAS Google Scholar
  49. Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acids and Sterols by Clostridia (Fusiform Bacteria) in Wistar Rats, Lipids 34, 269–273.
    Article PubMed CAS Google Scholar
  50. Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 265, 10925–10928.
    PubMed CAS Google Scholar
  51. Grill, J.P., Manginot-Durr, C., Schneider, F., and Ballongue, J. (1995) Bifidobacteria and Probiotic Effects: Action of Bifidobacterium Species on Conjugated Bile Salts, Curr. Microbiol. 31, 23–27.
    Article PubMed CAS Google Scholar
  52. Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2001) Clostridium hiranonis sp. nov., a Human Intestinal Bacterium with Bile Acid 7-Alpha-Dehydroxylating Activity, Int. J. Syst. Evol. Microbiol. 51, 39–44.
    PubMed CAS Google Scholar
  53. Doerner, K.C., Takamine, F., LaVoie, C.P., Mallonee, D.H., and Hylemon, P.B. (1997) Assessment of Fecal Bacteria with Bile Acid 7-Alpha-Dehydroxylating Activity for the Presence of Bailike Genes, Appl. Environ. Microbiol. 63, 1185–1188.
    PubMed CAS Google Scholar
  54. Wells, J.E., and Hylemon, P.B. (2000) Identification and Characterization of a Bile Acid 7-Alpha-Dehydroxylation Operon in Clostridium sp. Strain TO-931, a Highly Active 7-Alpha-Dehydroxylating Strain Isolated from Human Feces, Appl. Environ. Microbiol. 66, 1107–1113.
    Article PubMed CAS Google Scholar
  55. Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2000) Assignment of Eubacterium sp. VPI 12708 and Related Strains with High Bile Acid 7-Alpha-Dehydroxylating Activity to Clostridium scindens and Proposal of Clostridium hylemonae sp. nov., Isolated from Human Faeces, Int. J. Syst. Evol. Microbiol 50 Pt 3, 971–978.
    PubMed CAS Google Scholar
  56. White, B.A., Lipsky, R.L., Fricke, R.J., and Hylemon, P.B. (1980) Bile Acid Induction Specificity of 7-Alpha-Dehydroxylase Activity in an Intestinal Eubacterium Species, Steroids 35, 103–109.
    Article PubMed CAS Google Scholar
  57. Ridlon, J.M., Kang, D.-J., and Hylemon, P.B. (2006) Bile Salt Biotransformation by Human Intestinal Bacteria, J. Lipid Red. 47, 241–259.
    Article CAS Google Scholar
  58. Kitahara, M., Sakamoto, M., and Benno, Y. (2001) PCR Detection Method of Clostridium scindens and C. hiranonis in Human Fecal Samples, Microbiol. Immunol. 45, 263–266.
    PubMed CAS Google Scholar

Download references