From Diffusion to Reaction via Γ\GammaΓ-Convergence (original) (raw)

From Diffusion to Reaction via Γ-Convergence

Marco Veneroni

Siam Journal on Mathematical Analysis, 2010

View PDFchevron_right

From Diffusion to Reaction via G-Convergence

Marco Veneroni

Siam J Math Anal, 2010

View PDFchevron_right

Infinite interacting diffusion particles I: Equilibrium process and its scaling limit

E. Lytvynov, Yuri Kondratiev

Forum Mathematicum, 2000

View PDFchevron_right

Passing to the Limit in a Wasserstein Gradient Flow: From Diffusion to Reaction

Marco Veneroni

Siam Journal on Mathematical Analysis, 2011

View PDFchevron_right

The macroscopic limit in a stochastic reaction-diffusion process

Francesco Petruccione

View PDFchevron_right

Strong approximation of diffusion processes by transport processes

Richard Griego

Kyoto Journal of Mathematics, 1979

View PDFchevron_right

A stochastic mass conserved reaction-diffusion equation

Danielle Hilhorst

HAL (Le Centre pour la Communication Scientifique Directe), 2018

View PDFchevron_right

Scaling limit of stochastic dynamics in classical continuous systems

Yuri Kondratiev

The Annals of Probability, 2003

View PDFchevron_right

Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation

Francesco Russo

Electronic Journal of Probability, 2012

View PDFchevron_right

Transition asymptotics for reaction-diffusion in random media

Alejandro Ramirez

CRM Proceedings and Lecture Notes, 2007

View PDFchevron_right

Infinite dimensional diffusion processes with singular interaction

Sylvie Roelly

Bulletin des Sciences Mathématiques, 2000

View PDFchevron_right

An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations

Giuseppe Da Prato, Vladimir Bogachev

2013

View PDFchevron_right

Homogenized Diffusion Limit of a Vlasov–Poisson–Fokker–Planck Model

lazhar tayeb

Annales Henri Poincaré, 2016

View PDFchevron_right

Diffusion limit of the Vlasov-Poisson-Fokker-Planck system

Najoua El Ghani

Communications in Mathematical Sciences, 2010

View PDFchevron_right

Langevin Equations for Reaction-Diffusion Processes

Federico Benitez

Physical Review Letters, 2016

View PDFchevron_right

Stochastic theory of diffusion-controlled reactions

Gleb Oshanin

Physica A: Statistical Mechanics and its Applications, 2003

View PDFchevron_right

Relationship between a non-Markovian process and Fokker–Planck equation

Knud Zabrocki

Physics Letters A, 2006

View PDFchevron_right

On the continuum time limit of reaction-diffusion systems

Peter Grassberger

EPL (Europhysics Letters), 2013

View PDFchevron_right

The slow diffusion limit for the survival probability in reactive diffusion equations

Noam Agmon

View PDFchevron_right

The Levy-Fokker-Planck equation: -entropies and convergence to equilibrium

Ivan Gentil

2000

View PDFchevron_right

On Interacting Systems of Hilbert-Space-Valued Diffusions

Rajeeva Karandikar

Applied Mathematics and Optimization, 1998

View PDFchevron_right

Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations

Robert Eisenberg

The Journal of Chemical Physics, 1995

View PDFchevron_right

On Regularity of Transition Probabilities and Invariant Measures of Singular Diffusions Under Minimal Conditions

Vladimir Bogachev

Communications in Partial Differential Equations, 2001

View PDFchevron_right

Stochastic and geometric aspects of reduced reaction–diffusion dynamics

Franco Cardin

Ricerche di Matematica, 2018

View PDFchevron_right

Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces

Giuseppe Da Prato, Vladimir Bogachev

Journal of Functional Analysis, 2009

View PDFchevron_right

Invariant measures and the Kolmogorov equation for the stochastic fast diffusion equation

Giuseppe Da Prato

Stochastic Processes and their Applications, 2010

View PDFchevron_right

Measure-Valued Diffusions and Continual Systems of Interacting Particles in a Random Medium

Andrey Pilipenko

Ukrainian Mathematical Journal, 2005

View PDFchevron_right

Scaling Limit for the Diffusion Exit Problem

Sergio Almada

2016

View PDFchevron_right

A class of infinite-dimensional diffusion processes with connection to population genetics

Shui Feng

Journal of Applied Probability, 2007

View PDFchevron_right

Fokker–Planck Equation: Long-Time Dynamics in Approach to Equilibrium

Jayanta Bhattacharjee

Phase Transitions, 2004

View PDFchevron_right

Stochastic Variational formulas for solutions to linear diffusion equations

Mohar Guha

2009

View PDFchevron_right

Diffusion limit of Lévy-Lorentz gas is Brownian motion

Marcin Magdziarz

Communications in Nonlinear Science and Numerical Simulation, 2018

View PDFchevron_right

Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions

Fiammetta Conforto

Communications in Mathematical Sciences, 2014

View PDFchevron_right