Ammonium Chloride Research Papers - Academia.edu (original) (raw)
Leptin receptors are present in taste buds and previous research indicates that leptin administration modified electrophysiological and behavioral responses to sweet taste. It is now known that sweet taste is temperature dependent. We... more
Leptin receptors are present in taste buds and previous research indicates that leptin administration modified electrophysiological and behavioral responses to sweet taste. It is now known that sweet taste is temperature dependent. We examined the influence of (1) stimulus temperature on chorda tympani (CT) nerve responses to sucrose, saccharin and NH(4)Cl; and (2) leptin administration on CT nerve responses to sucrose, saccharin and other basic taste stimuli at 35°C that maximized sweet-taste sensitivity in C57BL/6 mice. We found that the CT nerve responded with greater magnitude to sucrose and saccharin as stimulus temperature increased from 23 to 35°C and then declined at higher temperatures. In contrast, the CT nerve responses to NH(4)Cl increased in magnitude as temperature increased from 23 to 44°C. We also showed that leptin selectively increased the CT nerve responses to sucrose at 35°C in both fasted and free-fed mice. The responses of mice treated with the saline vehicle did not change. Our findings are consistent with the notion that leptin binds with its receptors in fungiform taste buds and alters the message conveyed by sugar-responsive neurons to the brain.
- by and +2
- •
- Drug interactions, Biological Sciences, Mice, Animals
- by Khashayar Sakhaee
- •
- Humans, Kidney, Diuretics, Female
In rat, chorda tympani nerve taste responses to Na+ salts increase between roughly 10 and 45 days of age to reach stable, mature magnitudes. Previous evidence from in vitro preparations and from taste nerve responses using Na+ channel... more
In rat, chorda tympani nerve taste responses to Na+ salts increase between roughly 10 and 45 days of age to reach stable, mature magnitudes. Previous evidence from in vitro preparations and from taste nerve responses using Na+ channel blockers suggests that the physiological basis for this developmental increase in gustatory Na+ sensitivity is the progressive addition of functional, Na+ transduction elements (i.e., amiloride-sensitive Na+ channels) to the apical membranes of fungiform papilla taste receptor cells. To avoid potential confounding effects of pharmacological interventions and to permit quantification of aggregate Na+ channel behavior using a kinetic model, we obtained chorda tympani nerve responses to NaCl and sodium gluconate (NaGlu) during receptive field voltage clamp in rats aged from 12–14 to 60 days and older (60+ days). Significant, age-dependent increases in chorda tympani responses to these stimuli occurred as expected. Importantly, apical Na+ channel density, ...
- by Gerard Heck
- •
- Chemistry, Aging, Neurophysiology, Medicine
Degradation and utilization of protein by Prevotella ruminicola B14, a proteolytic bacterium that is promi- nent in the rumen, was examined. In preliminary experiments, proteinaceous N sources produced faster growth rates than did NH4Cl,... more
Degradation and utilization of protein by Prevotella ruminicola B14, a proteolytic bacterium that is promi- nent in the rumen, was examined. In preliminary experiments, proteinaceous N sources produced faster growth rates than did NH4Cl, based on changes in optical density over time. However, ammonium chlo- ride produced a greater maximum cell density than did proteinaceous N sources. Of the proteinaceous
- by 희선 김
- •
- Mitochondria, Free Radical, Caspases, Glucose
Since 1990 eight new antiepileptic drugs (AEDs) have been developed. Among these new drugs, Topiramate (TPM) is one of the latest AEDs available for treating drug resistant partial epilepsy both in adults and in children. The mechanisms... more
Since 1990 eight new antiepileptic drugs (AEDs) have been developed. Among these new drugs, Topiramate (TPM) is one of the latest AEDs available for treating drug resistant partial epilepsy both in adults and in children. The mechanisms underlying TPM antiepileptic activity are still incompletely understood. However, TPM, a sulfamatesubstituted derivative of the naturally occurring monosaccharide D-fructose, has a different structure from other known AEDs. The antiepileptic activity of TPM in animal models of partial and generalized tonic-clonic seizures has been shown to be more effective as compared to other AEDs. Proposed mechanisms of action include reduction of epileptiform discharges through a voltage-dependent block of Na+ channels, enhancement of the activity of γ-aminobutyrate at some subtypes of γ-aminobutyrate receptors, and antagonism of non- N-methyl-D-aspartate (NMDA) glutamate receptors. The pharmacokinetic profile of TPM, which is characterized by its rapid and almost complete absorption after oral administration, linear pharmacokinetics, minimal protein binding and predominantly renal excretion, makes the drug a good option for the treatment. TPM was found to be effective and well tolerated in many studies conducted in adults and pediatric patients suffering from epilepsy. This review, summarising the main studies in this field, provides an overview of the current knowledge about the relevant pharmacological and clinical information on the efficacy and tolerability of TPM.
Ammonium acetate and ammonium chloride are the white crystalline solid inorganic compounds having wide application in synthesis and analytical chemistry. The aim of present study was to evaluate the impact of biofield treatment on... more
Ammonium acetate and ammonium chloride are the white crystalline solid inorganic compounds having wide application in synthesis and analytical chemistry. The aim of present study was to evaluate the impact of biofield treatment on spectral properties of inorganic salt like ammonium acetate and ammonium chloride. The study was performed in two groups of each compound i.e., control and treatment. Treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, control and treated groups were evaluated using Fourier Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR spectrum of treated ammonium acetate showed the shifting in wavenumber of vibrational peaks with respect to control. Like, the N-H stretching was shifted from 3024-3586 cm-1 to 3033-3606 cm-1, C-H stretching from 2826-2893 cm-1 to 2817-2881 cm-1, C=O asymmetrical stretching from 1660-1702 cm-1 to 1680-1714 cm-1, N-H bending from 1533-1563 cm-1 to 1506-1556 cm-1 etc. Treated ammonium chloride showed the shifting in IR frequency of three distinct oscillation modes in NH4 ion i.e., at ν1, 3010 cm-1 to 3029 cm-1; ν2, 1724 cm-1 to 1741 cm-1; and ν3, 3156 cm-1 to 3124 cm-1. The N-Cl stretching was also shifted to downstream region i.e., from 710 cm-1 to 665 cm-1 in treated ammonium chloride. UV spectrum of treated ammonium acetate showed the absorbance maxima (λmax) at 258.0 nm that was shifted to 221.4 nm in treated sample. UV spectrum of control ammonium chloride exhibited two absorbance maxima (λmax) i.e., at 234.6 and 292.6 nm, which were shifted to 224.1 and 302.8 nm, respectively in treated sample. Overall, FT-IR and UV data of both compounds suggest an impact of biofield treatment on atomic level i.e., at force constant, bond strength, dipole moments and electron transition energy between two orbitals of treated compounds as compared to respective control.
- by Mahendra Kumar Trivedi and +2
- •
- HPLC, Bond Strength, Ammonium Chloride, FT IR
Polyacrylamid-guar gum polyblends have been prepared via graft copolymerization of acrylamide onto guar gum using KBrO3/thiourea redox system as initiators. In order to obtain polyblends with suitable viscosity and full total conversion... more
Polyacrylamid-guar gum polyblends have been prepared via graft copolymerization of acrylamide onto guar gum using KBrO3/thiourea redox system as initiators. In order to obtain polyblends with suitable viscosity and full total conversion the prepared polyblends were subjected to further treatment with K2S2O8. The amide groups in the polyblends are converted to reactive groups through methylolation with formaldehyde, with a view to obtain reactive polyblends. The feasibility of utilizationof the obtained reactive polyblends as permanent stiffening agents for cotton fabrics was studied. The reactive polyblends (i.e. methylolated polyblends) was then applied to cotton fabrics using the conventional pad-dry-cure method under various conditions. The influence of curing temperature, duration and type of catalysts (i.e., ammonium sulphate (NH4)2SO4 and ammonium chloride (NH4Cl)on the cross-linking reactions between the reactive polyblends in question and the cotton cellulose was investigated. The efficiency of the cross-linking reaction was monitored via determining nitrogen percentages. Evaluation tests on tensile properties (i.e., tensile strength (TS), and elongation at break(EAB), crease recovery angle (CRA), and stiffnessweremade. The results obtained indicate that reactive polyblends, the cotton fabrics under the optimum pad-cure conditions arrived at (3%Nmethylol-PAam- GG, 0.5% (NH4)2SO4; curing temperature 140◦C, and curing time, 5 min) produces fabric having excellent permanent stiffness, superior tensile strength as compared with that of untreated fabric. Tentative mechanisms, including different chemical events that can occur through the whole course of polymerization, methylolation and cross-linking processes, are reported.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch... more
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.
Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable... more
Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable dry-powder formulation by freeze-drying (lyophilization) using an amorphous inulin matrix as a stabilizer. In the presence of inulin the structural integrity and fusogenic activity of virosomes were fully preserved during freeze-drying. For example, the immunological properties of the virosomes, i.e. the HA potency in vitro and the immunogenic potential in vivo, were maintained during lyophilization in the presence of inulin. In addition, compared to virosomes dispersed in buffer, inulin-formulated virosomes showed substantially prolonged preservation of the HA potency upon storage. Also the capacity of virosomes to mediate cellular delivery of macromolecules was maintained during lyophilization in the presence of inulin and upon subsequent storage. Sp...
Several members of the Na-HCO cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular... more
Several members of the Na-HCO cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular pH and in the regulation of renal acid-base balance. However, it is unknown whether the expressions of these NBCs are regulated in response to changes in acid-base status. We therefore tested whether chronic metabolic acidosis (CMA) affects the abundance of these NBCs in kidneys using two conventional protocols. In protocol 1, rats were treated with NH(4)Cl in their drinking water (12 +/- 1 mmol. rat(-1). day(-1)) for 2 wk with free access to water (n = 8). Semiquantitative immunoblotting demonstrated that whole kidney abundance of NBCn1 and NBC3 in rats with CMA was dramatically increased to 995 +/- 87 and 224 +/- 35%, respectively, of control levels (P < 0.05), whereas whole kidney rkNBC1 was unchanged (88 +/- 14%). In protocol 2, rats were giv...
- by O. Rougier and +1
- •
- Fatigue, Ion Channels, Animals, Muscles
The use of digitonin to permeabilize the plasma membrane of Trypanosoma cruzi allowed the identification of a non-mitochondrial nigericin- or bafilomycin A1-sensitive Ca(2+)-uptake mechanism. Proton uptake, as detected by ATP-dependent... more
The use of digitonin to permeabilize the plasma membrane of Trypanosoma cruzi allowed the identification of a non-mitochondrial nigericin- or bafilomycin A1-sensitive Ca(2+)-uptake mechanism. Proton uptake, as detected by ATP-dependent Acridine Orange accumulation, was also demonstrated in these permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles. This latter process was inhibited (and reversed) by bafilomycin A1, nigericin and NH4Cl in different stages of T. cruzi. Ca2+ released Acridine Orange from permeabilized cells, suggesting that the dye and Ca2+ were being accumulated in the same acidic compartment and that Ca2+ was taken up in exchange for protons. Addition of bafilomycin A1 (5 microM), nigericin (1 microM) or carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP; 1 microM) to fura 2-loaded epimastigotes increased their intracellular Ca2+ concentration ([Ca2+]i). Although this effect was more noticeable in t...
- by Dwee Nugroho
- •
- Mg, Chlorine, Ammonium Chloride
High poly (3-hydroxybutyrate)(PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H.... more
High poly (3-hydroxybutyrate)(PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis ...
Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today’s water treatment industry. Both the development of new advanced oxidation technologies, but also... more
Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today’s water treatment industry. Both the development of new advanced oxidation technologies, but also the enhancement of existing conventional technologies is of high interest. This study tested improvements to conventional ozonation that reduce the formation of the oxidation-by-product bromate, while maintaining the effectiveness for removal emerging contaminants (atrazine). MnO4-, ClO2-, ClO2, ClO-, CH3COOO-, HSO5- or S2O8-2 with NH4+ were tested as pre-treatments to ozonation of ground water. Each oxidant and NH4+ were added in a single stage or separately prior to ozonation. To the best of our knowledge, this is the first study that has tested all the above-mentioned oxidants for the same water matrix. Based on our results, the most promising pre-treatments were MnO4--NH4+, ClO2--NH4+ and ClO2-NH4+. MnO4--NH4+ was the only pre-treatment that didn’t inhibited atrazine removal. When compared with the previously proposed Cl2/NH4+ pre-treatment, MnO4-+NH4+ was found as effective for preventing BrO3- formation, while atrazine removal was higher. In addition, MnO4-+NH4+ can be added in a single stage (compared to the 2 stage addition of Cl2/NH4+) without causing the formation of potentially harmful chlorination-by-products.
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and the astrocyte appears to be the principal target of ammonia toxicity. The specific neurochemical mechanisms underlying HE,... more
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and the astrocyte appears to be the principal target of ammonia toxicity. The specific neurochemical mechanisms underlying HE, however, remain elusive. One of the suggested mechanisms for ammonia toxicity is impaired cellular bioenergetics. Because there is evidence that the mitochondrial permeability transition (MPT) is associated with mitochondrial dysfunction, we determined whether the MPT might be involved in the bioenergetic alterations related to ammonia toxicity. Accordingly, we examined the mitochondrial membrane potential (Δψm) in cultured astrocytes and neurons using laser-scanning confocal microscopy after loading the cells with the voltage-sensitive dye JC-1. We found that ammonia induced a dissipation of the Δψm in a time- and concentration-dependent manner. These findings were supported by flow cytometry using the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Cyclosporin A, a specific inhibitor of the MPT, completely blocked the ammonia-induced dissipation of the Δψm. We also found an increase in the mitochondrial permeability to 2-deoxyglucose in astrocytes that had been exposed to 5 mM NH4Cl, further supporting the concept that ammonia induces the MPT in these cells. Pretreatment with methionine sulfoximine, an inhibitor of glutamine synthetase, blocked the ammonia-induced collapse of Δψm, suggesting a role of glutamine in this process. Over a 24-hr period, ammonia had no effect on the Δψm in cultured neurons. Collectively, our data indicate that ammonia induces the MPT in cultured astrocytes, which may be a factor in the mitochondrial dysfunction associated with HE and other hyperammonemic states. © 2001 Wiley-Liss, Inc.
- by Sailesh Kumar
- •
- Physiology, Globin, Pregnancy, Humans