Mutation Research Papers - Academia.edu (original) (raw)

Mitochondrial DNA depletion syndromes (MDSs) form a group of autosomal recessive disorders characterized by profoundly decreased mitochondrial DNA copy numbers in affected tissues. Three main clinical presentations are known: myopathic,... more

Mitochondrial DNA depletion syndromes (MDSs) form a group of autosomal recessive disorders characterized by profoundly decreased mitochondrial DNA copy numbers in affected tissues. Three main clinical presentations are known: myopathic, encephalomyopathic and hepatocerebral. The first is associated with mutations in thymidine kinase 2 (TK2) and p53-induced ribonucleotide reductase B subunit (RRM2B); the second with mutations in succinate synthase A (SUCLA2) and B (SUCLG1); the third with mutations in Twinkle (PEO1), pol-γA (POLG1), deoxyguanosine kinase (DGUOK) and MPV17 (MPV17). In this work, we review the MDS-associated phenotypes and present our own experience of 32 MDS patients, with the aim of defining the mutation frequency of the known genes, the clinical spectrum of the diseases, and the genotype–phenotype correlations. Five of our patients carried previously unreported mutations in one of the eight MDS genes.

Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA... more

Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic ...

n engl j med 360;5 nejm.org january 29, 2009 538 Zaman K, Roy E, Arifeen SE, et al. Effectiveness of maternal 1. influenza immunization in mothers and infants. N Engl J Med 2008;359:1555-64. Ali HM, Scott R, Toms GL. The effect of foster... more

n engl j med 360;5 nejm.org january 29, 2009 538 Zaman K, Roy E, Arifeen SE, et al. Effectiveness of maternal 1. influenza immunization in mothers and infants. N Engl J Med 2008;359:1555-64. Ali HM, Scott R, Toms GL. The effect of foster feeding and 2. bottle feeding expressed breast-milk on the susceptibility of guinea-pig infants to influenza virus. Br J Exp Pathol 1989;70: 183-91. Chantry CJ, Howard CR, Auinger P. Full breastfeeding dura3. tion and associated decrease in respiratory tract infection in US children. Pediatrics 2006;117:425-32.

Two angiotensin II (Ang II)–specific receptors, AGTR1 and AGTR2, are expressed in the mammalian brain. Ang II actions on blood pressure regulation, water electrolyte balance, and hormone secretion are primarily mediated by AGTR1. The... more

Two angiotensin II (Ang II)–specific receptors, AGTR1 and AGTR2, are expressed in the mammalian brain. Ang II actions on blood pressure regulation, water electrolyte balance, and hormone secretion are primarily mediated by AGTR1. The function of AGTR2 remains unclear. Here, we show that expression of the AGTR2 gene was absent in a female patient with mental retardation (MR) who had a balanced X;7 chromosomal translocation. Additionally, 8 of 590 unrelated male patients with MR were found to have sequence changes in the AGTR2 gene, including one frameshift and three missense mutations. These findings indicate a role for AGTR2 in brain development and cognitive function.

The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also... more

The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease.

Mutations in the GJB2 gene are a major cause of non‐syndromic recessive hearing loss in many countries. In a significant fraction of patients, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity are... more

Mutations in the GJB2 gene are a major cause of non‐syndromic recessive hearing loss in many countries. In a significant fraction of patients, only monoallelic GJB2 mutations known to be either recessive or of unclear pathogenicity are identified. This paper reports a novel GJB2 mutation, −3438C→T, found in the basal promoter of the gene, in trans with V84M, in a patient with profound hearing impairment. This novel mutation can abolish the basal promoter activity of GJB2. These results highlight the importance of extending the mutational screening to regions outside the coding region of GJB2.

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for... more

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (h...

In this report, we have investigated the contribution of primary sequence to the carbohydrate requirement for intracellular transport of two closely related glycoproteins, the G proteins of the San Juan and Orsay strains of vesicular... more

In this report, we have investigated the contribution of primary sequence to the carbohydrate requirement for intracellular transport of two closely related glycoproteins, the G proteins of the San Juan and Orsay strains of vesicular stomatitis virus. We used site-directed mutagenesis of the coding sequence to eliminate the two consensus sites for glycosylation in the Orsay G protein. Whereas the nonglycosylated San Juan G protein required at least one of its two asparagine-linked oligosaccharides for transport to the plasma membrane at 37 degrees C, a fraction of the Orsay G protein was transported without carbohydrate. Of the 10 amino acid differences between these two proteins, residue 172 (tyrosine in San Juan, aspartic acid in Orsay) played the major role in determining the stringency for the carbohydrate requirement. The rates at which the glycosylated and nonglycosylated Orsay G proteins were transported to the cell surface were the same, although a smaller fraction of the no...

Mutations in SF3B1, which encodes a spliceosome component, are associated with poor outcome in chronic lymphocytic leukemia (CLL), but how these contribute to CLL progression remains poorly understood. We undertook a transcriptomic... more

Mutations in SF3B1, which encodes a spliceosome component, are associated with poor outcome in chronic lymphocytic leukemia (CLL), but how these contribute to CLL progression remains poorly understood. We undertook a transcriptomic characterization of primary human CLL cells to identify transcripts and pathways affected by SF3B1 mutation. Splicing alterations, identified in the analysis of bulk cells, were confirmed in single SF3B1-mutated CLL cells and also found in cell lines ectopically expressing mutant SF3B1. SF3B1 mutation was found to dysregulate multiple cellular functions including DNA damage response, telomere maintenance, and Notch signaling (mediated through KLF8 upregulation, increased TERC and TERT expression, or altered splicing of DVL2 transcript, respectively). SF3B1 mutation leads to diverse changes in CLL-related pathways.

Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast,... more

Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced th...

Terpenes and sterols are complex molecules synthesized by equally complex biosynthetic pathways. Recent progress in using the tools of genetics, molecular genetics and genetic engineering to dissect triterpene metabolism in the cytosol,... more

Terpenes and sterols are complex molecules synthesized by equally complex biosynthetic pathways. Recent progress in using the tools of genetics, molecular genetics and genetic engineering to dissect triterpene metabolism in the cytosol, and terpene metabolism in the ...

Study of the relationship between mutagenicity and molecular structure for a data set of nitrogenous cyclic compounds is reported. A computerized SAR system (ADAPT) was utilized to classify a data set of 114 nitrogenous cyclic compounds... more

Study of the relationship between mutagenicity and molecular structure for a data set of nitrogenous cyclic compounds is reported. A computerized SAR system (ADAPT) was utilized to classify a data set of 114 nitrogenous cyclic compounds with 19 molecular descriptors. All of the descriptors represented at least 10% of the compounds in the data sets. The average correct predictability of the data base was calculated to be 89% after evaluating 100 training/prediction subsets. The actual predictive ability of the discriminants generated by the ADAPT system was demonstrated by predicting the mutagenicity of structurally similar compounds not in the data set. Weight vectors generated in the pattern recognition programs were used to predict the bacterial mutagenicity of 10 compounds which were not included in the data set. All of the compounds were predicted correctly which was actually better than the 89% calculated by the system. This displayed the ability of the system of classify compo...

A mutant strain of pneumococcus which fails to discriminate against low-efficiency markers during transformation by homospecific pneumococcal donor DNA retains the wild-type capacity to discriminate against heterospecific (streptococcal)... more

A mutant strain of pneumococcus which fails to discriminate against low-efficiency markers during transformation by homospecific pneumococcal donor DNA retains the wild-type capacity to discriminate against heterospecific (streptococcal) donor DNA. We conclude that discrimination against heterospecific DNA must differ from that against low-efficiency markers by the kind or number of elements being recognized.

Gain-of-function mutations or dysregulated expression of voltage-gated sodium channels can produce neuronal hyperexcitability, leading to acute or chronic pain. The sodium channel Na(v)1.7 is expressed preferentially in most slowly... more

Gain-of-function mutations or dysregulated expression of voltage-gated sodium channels can produce neuronal hyperexcitability, leading to acute or chronic pain. The sodium channel Na(v)1.7 is expressed preferentially in most slowly conducting nociceptive neurons and in sympathetic neurons. Gain-of-function mutations in the Na(v)1.7 channel lead to DRG neuron hyperexcitability associated with severe pain, whereas loss of the Na(v)1.7 channel in patients leads to indifference to pain. The contribution of Na(v)1.7 to acquired and inherited pain states and the absence of motor, cognitive and cardiac deficits in patients lacking this channel make it an attractive target for the treatment of neuropathic pain.

Griscelli syndrome (GS) is caused by mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes, all of which lead to a similar pigmentary dilution. In addition, GS1 patients show primary neurological impairment, whereas GS2 patients... more

Griscelli syndrome (GS) is caused by mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes, all of which lead to a similar pigmentary dilution. In addition, GS1 patients show primary neurological impairment, whereas GS2 patients present immunodeficiency and periods of lymphocyte proliferation and activation, leading to their infiltration in many organs, such as the nervous system, causing secondary neurological damage. We report the diagnosis of GS2 in a 4-year-old child with haemophagocytic syndrome, immunodeficiency, and secondary neurological disorders. Typical melanosome accumulation was found in skin melanocytes and pigment clumps were observed in hair shafts. Two heterozygous mutant alleles of the RAB27A gene were found, a C-T transition (C352T) that leads to Q118stop and a G-C transversion on the exon 5 splicing donor site (G467+1C). Functional assays showed increased cellular activation and decreased cytotoxic activity of NK and CD8+ T cells, associated with defective lytic granules release. Myosin-Va expression and localization in the patient lymphocytes were also analyzed. Most importantly, we show that cytotoxic activity of the patient's CD8+ T lymphocytes can be rescued in vitro by RAB27A gene transfer mediated by a recombinant retroviral vector, a first step towards a potential treatment of the acute phase of GS2 by RAB27A transduced lymphocytes.

Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the calpain 3 gene. In a large family affected by LGMD2A with four severely affected members, three additional asymptomatic relatives had very high serum creatine... more

Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the calpain 3 gene. In a large family affected by LGMD2A with four severely affected members, three additional asymptomatic relatives had very high serum creatine kinase concentrations. All were homozygous for the R110X mutation and showed a total absence of calpain 3 in the muscle. Histological analysis of