Soil Pollutants Research Papers - Academia.edu (original) (raw)

Phospholipid fatty acid (PLFA) analysis of a soil microbial community was coupled with 13C isotope tracer analysis to measure the community’s response to addition of 35 μg of [13C]toluene ml of soil solution−1. After 119 h of incubation... more

Phospholipid fatty acid (PLFA) analysis of a soil microbial community was coupled with 13C isotope tracer analysis to measure the community’s response to addition of 35 μg of [13C]toluene ml of soil solution−1. After 119 h of incubation with toluene, 96% of the incorporated 13C was detected in only 16 of the total 59 PLFAs (27%) extracted from the soil. Of the total 13C-enriched PLFAs, 85% were identical to the PLFAs contained in a toluene-metabolizing bacterium isolated from the same soil. In contrast, the majority of the soil PLFAs (91%) became labeled when the same soil was incubated with [13C]glucose. Our study showed that coupling 13C tracer analysis with PLFA analysis is an effective technique for distinguishing a specific microbial population involved in metabolism of a labeled substrate in complex environments such as soil.

The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic... more

The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reaction...

The efficacy of a new rhamnolipid biosurfactants mixture to enhance the removal of pyrene from a soil artificially contaminated was investigated. The molar solubilization ratio (MSR) and the partition coefficient between the micelles and... more

The efficacy of a new rhamnolipid biosurfactants mixture to enhance the removal of pyrene from a soil artificially contaminated was investigated. The molar solubilization ratio (MSR) and the partition coefficient between the micelles and water (log K(m)) were found to be 7.5 x 10(-3) and 5.7, respectively. From soil column studies, the pyrene removal increased linearly with the concentration of the injected biosurfactants solution above the effective critical micellar concentration (0.4 g L(-1)). Flushing with a 5.0 g L(-1) biosurfactants solution increased the pyrene concentration in the effluent by 178 times. At high biosurfactants' concentrations (2.5 and 5.0 g L(-1)), the cumulative pyrene recovery reached 70%. This pyrene remobilization takes place independently of the soil organic carbon solubilization. This study provides a combination of batch and column experiments in order to find the conditions for effective soil remediation using a new rhamnolipids mixture.

In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has... more

In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween(®) 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween(®) 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween(®) 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed th...

The SO4= toxicity in gypsiferous soils, which represent more than 100 million hectares worldwide, constitutes one of the major problems limiting world agricultural output. Currently, phytoremediation of SO4= is regarded, from agricultural... more

The SO4= toxicity in gypsiferous soils, which represent more than 100 million hectares worldwide, constitutes one of the major problems limiting world agricultural output. Currently, phytoremediation of SO4= is regarded, from agricultural and environmental standpoints, as one of the most effective alternatives for the decontamination and recovery of these soils. In this study, we analyzed the behavior of five plant species characteristic of gypsiferous soils (Gypsophila struthium, Helianthemun alypoides, H. squamatum, H. syriacum, and Lepidium subulatum) in order to establish the variability of these plants in terms of S-extraction mechanisms. Our results indicate that the species best adapted and with the densest population was Lepidium subulatum. This plant showed the highest concentration of total S and the greatest organic S, as well as the highest levels of amino acids and proteins. In this study, we propose that the incorporation of S into organic compounds is the essential me...

Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol... more

Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.