Направленный отрезок | это... Что такое Направленный отрезок? (original) (raw)

Под направленным отрезком \overrightarrow{AB} в геометрии понимают упорядоченную пару точек, первая из которых — точка A — называется его началом, а вторая — B — его концом.

Содержание

Определение

Вектором в простейшем случае называется направленный отрезок, а в других случаях различные векторы — это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» итд). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Учитывая изоморфизм между множеством свободных векторов и множеством их параллельных переносов пространства, если операцию сложения отождествить с композицией переносов, можно использовать множество параллельных переносов пространства даже для определения вектора.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Свободные, скользящие и фиксированные векторы

Иногда, вместо того, чтобы рассматривать в качестве векторов множество всех равных направленных отрезков, берут только некоторую модификацию этого множества (фактормножество). Так, говорят о «свободных» (когда отождествляются все равные по длине и направлению направленные отрезки, считаясь полностью равными или одним и тем же вектором), «скользящих» (отождествляются между собой все направленные отрезки, равные в смысле свободных векторов, начала и концы которых расположены на одной прямой) и «фиксированных» векторах (по сути дела, просто о направленных отрезках, когда разное начало означает уже неравенство векторов).

Определение. Говорят, что свободные векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если найдутся точки E и F такие, что четырёхугольники A B F E и C D F Eпараллелограммы.

Определение. Говорят, что свободные векторы \overrightarrow{AB} и \ \overrightarrow{CD}, не лежащие на одной прямой, равны, если четырёхугольник A B D Cпараллелограмм.

Определение. Говорят, что скользящие векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если

Неформально говоря, скользящему вектору разрешено двигаться вдоль его прямой без изменения величины и направления.

Определение. Говорят, что фиксированные векторы \overrightarrow{AB} и \ \overrightarrow{CD} равны, если попарно совпадают точки A и C, B и D.

Операции над векторами

Сложение векторов

Два вектора u, v и вектор их суммы

Сложение двух свободных векторов можно осуществлять как по правилу параллелограмма, так и по правилу треугольника.

Правило треугольника. Для сложения двух векторов \vec{u} и \vec{v} по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора.

Правило параллелограмма. Для сложения двух векторов \vec{u} и \vec{v} по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.

Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Тогда каждый из векторов переносится вдоль своей прямой в точку пересечения этих прямых, после чего сложение осуществляется по правилу параллелограмма.

Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало. Их сложение в этом случае осуществляется по правилу параллелограмма.

Сложение коллинеарных скользящих векторов

Если скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В механике при изучении статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы \vec{a} и \vec{b}, расположенные на параллельных прямых. Добавим к ним векторы \vec{c} и -\vec{c}, расположенные на одной прямой. Прямые, на которых расположены векторы \vec{a} и \vec{c}, \vec{a} и -\vec{c} пересекаются. Поэтому определены векторы

\vec{a}'=\vec{a}+\vec{c}, \quad \vec{b}'=\vec{b}-\vec{c}

Прямые, на которых расположены векторы \vec{a}' и \vec{b}', пересекаются всегда, за исключением случая, когда векторы \vec{a} и \vec{b} равны по величине и противоположны по направлению, в котором говорят, что векторы \vec{a} и -\vec{a} образуют пару (векторов).

Таким образом, под суммой векторов \vec{a} и \vec{b} можно понимать сумму векторов \vec{a}' и \vec{b}', и эта сумма векторов определена корректно во всех случаях, когда векторы \vec{a} и \vec{b} не образуют пару.

Произведение вектора на число

Произведением вектора \vec{a} и числа λ называется вектор, обозначаемый \lambda\vec{a}(или \vec{a}\lambda), модуль которого равен |\lambda|\cdot|\vec{a}|, а направление совпадает с направлением вектора \vec{a}, если \lambda>0 \,, и противоположно ему, если \lambda<0 \,. Если же \lambda=0 \,, или вектор \vec{a} нулевой, тогда и только тогда произведение \lambda\vec{a} — нулевой вектор.

Из определения произведения вектора на число легко вывести следующие свойства:

  1. если \vec{b} = \vec{a}\lambda, то \vec{b}||\vec{a}. Наоборот, если \vec{b}||\vec{a}\ (\vec{a}\not= 0), то при некотором λ верно равенство \vec{b}=\vec{a}\lambda;
  2. всегда \vec{a}=|\vec{a}|\cdot\vec{a}°, то есть каждый вектор равен произведению его модуля на орт.

Скалярное произведение

Скалярным произведением векторов \vec{a} и \vec{b} называют число, равное |\vec{a}|\cdot|\vec{b}|\cos \varphi \,, где \varphi \,угол между векторами \vec{a} и \vec{b}. Обозначения: (\vec{a},\vec{b}) или \vec{a}\cdot\vec{b}.

Если один из векторов является нулевым, то несмотря на то, что угол \varphi не определён, произведение равно нулю.

Свойства скалярного произведения векторов:

  1. \vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}\,коммутативность.
  2. \vec{a}\cdot(\vec{b}+\vec{c})=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}\,дистрибутивность.
  3. (\alpha\vec{a},\vec{b})=\alpha (\vec{a},\vec{b}) — линейность по отношению к умножению на число.
  4. (\vec{a},\vec{a})=|\vec{a}|^2\,норма вектора.

Геометрически скалярное произведение есть произведение длины одного из сомножителей на ортогональную проекцию другого на направление первого (или наоборот). Скалярное произведение какого-то вектора \vec{a} с единичным вектором есть ортогональная проекция вектора \vec{a} на направление единичного вектора.

Векторное произведение

Векторным произведением вектора a на вектор b называется вектор c, удовлетворяющий следующим требованиям:


\left| \vec c \right| = \left| \vec a \right| \cdot \left| \vec b \right| \sin \varphi

Обозначение:  \vec c = \left[ \vec a \vec b \right] = \left[ \vec a, \vec b \right] = \vec a \times \vec b

Геометрически векторное произведение \vec a \times \vec b есть ориентированная площадь параллелограмма, построенного на векторах \vec a, \vec b, представленная псевдовектором, ортогональным этому параллелограмму.

Свойства векторного произведения:

  1. При перестановке сомножителей векторное произведение меняет знак (антикоммутативность), т.е

 \vec a \times \vec b = -(\vec b \times \vec a)

  1. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, то есть

\lambda(\vec a \vec b) = (\lambda \vec a) \times \vec b = \vec a \times (\lambda \vec b)

  1. Векторное произведение обладает распределительным свойством:

(\vec a + \vec b) \times \vec c = \vec a \times \vec c + \vec b \times \vec c

Смешанное произведение

Сме́шанное произведе́ние  ( \vec{a}, \vec{b}, \vec{c} ) векторов \vec{a}, \vec{b}, \vec{c}скалярное произведение вектора \vec{a} на векторное произведение векторов \vec{b} и \vec{c}:

(\vec{a}, \vec{b}, \vec{c}) = \left(\vec{a}, [\vec{b}, \vec{c}]\right) = \vec{a}\cdot\left(\vec{b}\times\vec{c}\right)

(равенство записано для разных обозначений скалярного и векторного произведения).

Иногда смешанное произведение называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).

Геометрически смешанное произведение  ( \vec{a}, \vec{b}, \vec{c} ) есть (ориентированный) объем параллелепипеда, построенного на векторах \vec{a}, \vec{b}, \vec{c}.

Условие перпендикулярности векторов

Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.

Пример

Даны два вектора \vec a(x_1;y_1) и \vec b(x_2;y_2). Эти векторы будут перпендикулярны, если выражение _x_1_x_2 + _y_1_y_2 = 0.

Условие коллинеарности векторов

Векторы являются коллинеарными тогда и только тогда, когда их векторное произведение равно нулю.

Пример

Даны два вектора \vec a=(x_1;y_1) и \vec b=(x_2;y_2). Эти векторы коллинеарны, если _x_1 = λ_x_2 и _y_1 = λ_y_2, где \lambda \in \mathbb R

См. также

Ссылки

Wikimedia Foundation.2010.