Параллелограмм | это... Что такое Параллелограмм? (original) (raw)
Параллелограмм
Параллелогра́мм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Свойства
пусть а — длина стороны AB, b — длина стороны BC, и — длины диагоналей; тогда
Доказательство
Проведя диагональ BD, мы получим два треугольника: ABD и BCD, которые равны, т.к. одна сторона у них общая, а соответственные углы при стороне BD равны как накрест лежащие при параллельных прямых , , где BD - секущая. Из равенства треугольников следует: и ∠A = ∠С Противоположные углы ∠B и ∠D также равны, т.к. они представляют собой суммы равных углов.
Наконец, углы, прилежащие к одной стороне, например ∠A и ∠D, дают в сумме 180°, так как это углы внутренние односторонние при параллельных прямых.
По теореме косинусов: Поскольку , то Складывая полученные равенства:
- Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Признаки параллелограмма
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1. Если в четырёхугольнике противоположенные стороны попарно равны, то четырёхугольник параллелограмм 2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник параллелограмм 3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник параллелограмм
Площадь параллелограмма
, где a — сторона, h — высота проведенная к этой стороне.
, где a и b — стороны, а — угол между сторонами a и b.
.
См. также
Многоугольники | |
---|---|
По числу вершин | 1-10 Одноугольник • Двуугольник • Треугольник • Четырёхугольник (Дельтоид) • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • Десятиугольник 11-20 Одиннадцатиугольник (англ.) • Двенадцатиугольник |
Правильные | Выпуклые Треугольник • Четырёхугольник • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • ... • 17-угольник • ... • 257-угольник • ... • 65537-угольник Звёздчатая форма Звезды (Пентаграмма • Гексаграмма • Октаграмма) |
Выпуклые | Четырёхугольники: Параллелограмм • Прямоугольник • Ромб • Трапеция Планигон |
См. также | Теория и практика: Принадлежность точки многоугольнику • Теорема Бойяи — Гервина • Теорема Брахмагупты • Теорема Гаусса — Ванцеля • Формула Пика • Теорема о сумме углов многоугольника |