Нечёткая логика | это... Что такое Нечёткая логика? (original) (raw)
Нечёткая логика (англ. fuzzy logic) и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В его статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.
Предметом нечёткой логики является построение моделей приближенных рассуждений человека и использование их в компьютерных системах[1].
Содержание
- 1 Направления исследований нечёткой логики
- 2 Математические основы
- 3 См. также
- 4 Примечания
- 5 Литература
- 6 Ссылки
Направления исследований нечёткой логики
В настоящее время существует по крайней мере два основных направления научных исследований в области нечёткой логики:
- нечёткая логика в широком смысле (теория приближенных вычислений);
- нечёткая логика в узком смысле (символическая нечёткая логика).
Математические основы
Символическая нечёткая логика
Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.
Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.
Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).
Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).
Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.
Теория приближенных вычислений
Основное понятие нечёткой логики в широком смысле — нечёткое множество, определяемое при помощи обобщенного понятия характеристической функции. Затем вводятся понятия объединения, пересечения и дополнения множеств (через характеристическую функцию; задать можно различными способами), понятие нечёткого отношения, а также одно из важнейших понятий — понятие лингвистической переменной.
Вообще говоря, даже такой минимальный набор определений позволяет использовать нечёткую логику в некоторых приложениях, для большинства же необходимо задать ещё и правило вывода (и оператор импликации).
Нечеткая логика и нейронные сети
Поскольку нечеткие множества описываются функциями принадлежности, а t-нормы и k-нормы обычными математическими операциями, можно представить нечеткие логические рассуждения в виде нейронной сети. Для этого функции принадлежности надо интерпретировать как функции активации нейронов, передачу сигналов как связи, а логические t-нормы и k-нормы, как специальные виды нейронов, выполняющие математические соответствующие операции. Существует большое разнообразие подобных нейро-нечетких сетей neuro-fuzzy network (англ.) . Например, ANFIS ( Adaptive Neuro fuzzy Inference System) - адаптивная нейро-нечеткая система вывода.[2] (англ.)
Она может быть описана в универсальной форме аппроксиматоров как
,
кроме того, этой формулой могут быть описаны также некоторые виды нейронных сетей, такие как радиально базисные сети (RBF), многослойные персептроны (MLP), а также вейвлеты и сплайны.
Примеры
Нечёткое множество, содержащее число 5
Нечёткое множество, содержащее число 5, можно задать, например, такой характеристической функцией:
Пример определения лингвистической переменной
В обозначениях, принятых для лингвистической переменной:
- X = «Температура в комнате»
- U = [5, 35]
- T = {«холодно», «тепло», «жарко»}
Характеристические функции:
Правило G порождает новые термы с использованием союзов «и», «или», «не», «очень», «более или менее».
- не A:
- очень A:
- более или менее A:
- A или B:
- A и B:
См. также
Примечания
- ↑ В. В. Круглов, M. И. Дли, Р. Ю. Голунов. Нечеткая логика и искусственные нейронные сети. — М.: Физматлит, 2000. — 224 с. ISBN 5-94052-027-8.
- ↑ Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, May 1993.
Литература
- Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир, 1976. 166c.
- Тэрано, Т.; Асаи, К.; Сугэно, М. Прикладные нёчеткие системы. М.: Мир, 1993. 368c.
- Новак В., Перфильева И., Мочкрож И. Математические принципы нечёткой логики = Mathematical Principles of Fuzzy Logic. — Физматлит, 2006. — 352 с. — ISBN 0-7923-8595-0
- Круглов В. В. Дли М. И. Голунов Р. Ю. Нечёткая логика и искусственные нейронные сети. М.: Физматлит, 2001. 221с.
- Дьяконов А. П., Круглов В. В. MATLAB. Математические пакеты расширения. Специальный справочник. СПб.: Питер, 2001. 480с (имеются главы по нечёткой логике и нейронным сетям).
- Дьяконов А. П., Абраменкова И. В., Круглов В. В. MATLAB 5 с пакетами расширений. Под редакцией проф. В. П. Дьяконова. М.: Нолидж, 2001. 880с (имеются главы по нечёткой логике и нейронным сетям).
- Дьяконов А. П., Круглов В. В. MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Инструменты искусственнго интеллекта и биоинформатики. М.: СОЛОН-Пресс, 2006. 456с.
- Рутковский Л. Методы и технологии искусственного интеллекта: Пер. с польского И. Д. Рудинского. М.: Горячая линия — Телеком, 2010. — 520 с. ISBN 5-9912-0105-6
- Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. М.: Горячая линия — Телеком, 2004. — 452 с. ISBN 5-93517-103-1
- Uziel Sandler, Lev Tsitolovsky Neural Cell Behavior and Fuzzy Logic. Springer, 2008. — 478 с. ISBN 978-0-387-09542-4
Ссылки
- Статьи и доклады Лотфи Заде.(недоступная ссылка — история)
- Нечеткая логика, мягкие вычисления и вычислительный интеллект. Архивировано из первоисточника 13 февраля 2012.
- Нечеткая логика — математические основы. Архивировано из первоисточника 13 февраля 2012.
- Статьи по нечетким множествам (рус.). Архивировано из первоисточника 13 февраля 2012. Проверено 20 января 2009.
- Форум по нечеткой логике (рус.). Архивировано из первоисточника 13 февраля 2012. Проверено 8 января 2009.
- Учебник по математической логике, содержащий и главу о нечеткой логике (рус.). Архивировано из первоисточника 13 февраля 2012. Проверено 8 января 2009.
- Информационно-методический портал кафедры ИПМ (Информатика и прикладная математика) (рус.). — Ранее "Сайт, посвященный нечеткой логике". Разделы доступны только для зарегистрированных пользователей. Архивировано из первоисточника 13 февраля 2012. Проверено 8 января 2009.
- Сергей Гриняев Нечеткая логика в системах управления (рус.) (html). Компьютерра–Онлайн (8 октября 2001). — Статья в журнале Компьютерра. Проверено 8 января 2009.
- Fuzzy Logic Toolbox (англ.). — Дополнение к MATLAB для моделирования систем с нечеткой логикой. Архивировано из первоисточника 13 февраля 2012. Проверено 8 января 2009.
- Fuzzy Logic Toolbox - Проектирование систем управления (рус.) (html). Экспонента.ру. Архивировано из первоисточника 13 февраля 2012. Проверено 8 января 2009.
- [1] Научные статьи по нечёткой логике.