Большой взрыв | это... Что такое Большой взрыв? (original) (raw)

Космология
WMAP 2003.png
Изучаемые объекты и процессы
Вселенная Наблюдаемая Вселенная Возраст Вселенной Крупномасштабная структура Вселенной Формирование структуры Реликтовое излучение Тёмная энергия Скрытая масса
Наблюдаемые процессы
Космологическое красное смещение Расширение Вселенной Формирование галактик Закон Хаббла Нуклеосинтез
Теоретические изыскания
Космологические модели Космическая инфляция Большой взрыв Хронология Большого взрыва Вселенная Фридмана Сопутствующее расстояние Модель Лямбда-CDM‎ Космологический принцип Космологическое уравнение состояния Критическая плотность Хронология космологии

Большо́й взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной[1], а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Содержание

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[2][3][4] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

Question book-4.svg В этом и следующем разделах не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 26 декабря 2010.

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История развития представлений о Большом Взрыве

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.[9][10][11] Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.[11]

В некоторых теориях инфляции (например, вечной инфляции) наша наблюдаемая картина Большого взрыва соответствует положению лишь в наблюдаемой нами части Вселенной (Метагалактике), но не исчерпывает всю Вселенную.

Кроме того, в теории Большого взрыва не рассматривается вопрос о причинах возникновения сингулярности, или материи и энергии для её возникновения, обычно просто постулируется её безначальность. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Есть также некоторое число наблюдательных фактов, плохо согласующихся с изотропностью и однородностью наблюдаемой Вселенной: наличие преимущественного направления вращения галактик[12][13], неоднородности в распределении галактик на наибольших доступных масштабах, ось зла.

Теория и религия

22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира[14][15]. В православии также существует положительное отношение к этой теории.[16] Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва, как поддерживающую историческую интерпретацию учения о творении[17]. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва[18][19]. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично[20][21], однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного»[22].

В Писаниях бахаи утверждается, что Вселенная не имеет начала, однако все элементы произошли из некоторой единой субстанции — то есть, был предсказан какой-то аналог теории Стивена Хокинга о «конечной, но бескрайней» Вселенной[23]: «Знайте, что одна из самых сложных для постижения духовных истин есть та, что существующий мир — сия бесконечная Вселенная — не имеет начала… Очевидно, что вначале материя была едина, и что единая материя проявлялась по-разному в каждом элементе. Так было создано многообразие форм, и различные виды проявления материи, единожды возникнув, остались в качестве постоянных, так что каждый элемент обрёл свою индивидуальность. Но это постоянство было не окончательным, и полностью и в совершенстве осуществилось лишь по прошествии очень долгого периода времени».[24]

См. также

Примечания

  1. Wollack, Edward J. Cosmology: The Study of the Universe. Universe 101: Big Bang Theory. NASA (10 December 2010). Архивировано из первоисточника 30 мая 2012. Проверено 27 апреля 2011.
  2. How Old is the Universe? (англ.). НАСА (19 июля 2010 года). Архивировано из первоисточника 23 августа 2011. Проверено 28 октября 2010.
  3. Komatsu, E.; et al. (2009). «Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation». Astrophysical Journal Supplement 180 (2): 330. DOI:10.1088/0067-0049/180/2/330. Bibcode: 2009ApJS..180..330K.
  4. Menegoni, E.; et al. (2009). «New constraints on variations of the fine structure constant from CMB anisotropies». Physical Review D 80 (8): 087302. DOI:10.1103/PhysRevD.80.087302. Bibcode: 2009PhRvD..80h7302M.
  5. Einstein, Albert Die Grundlage der allgemeinen Relativittstheorie (нем.) // Annalen der Physik. — 1916. — № 7. — P. 769—822. — ISSN 1521-3889.
  6. Wirtz, C. De Sitters Kosmologie und die Radialbewegungen der Spiralnebel // Astronomische Nachrichten, Bd. 222, S. 21 (1924)
  7. Cosmic Microwave Background Timeline Национальная лаборатория им. Лоуренса в Беркли
  8. Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Архивировано из первоисточника 30 мая 2012. Проверено 9 марта 2012. (см. таблицу наилучших оценок космологических параметров на с. 39)
  9. Wright E.L. Errors in Tired Light Cosmology.
  10. Overduin J.M., Wesson P.S. The light/dark universe: light from galaxies, dark matter and dark energy. — World Scientific Publishing Co., 2008. — ISBN 9812834419
  11. 1 2 P. J. E. Peebles The Standard Cosmological Model in Rencontres de Physique de la Vallee d’Aosta (1998) ed. M. Greco, p. 7
  12. Учёные нашли след вращения Вселенной при рождении
  13. ScienceDirect — Physics Letters B : Detection of a dipole in the handedness of spiral galaxies with redshifts
  14. Ferris T. Coming of age in the Milky Way. — Morrow, 1988. — P. 274, 438. — ISBN 978-0-688-05889-0, citing Berger A. The Big bang and Georges Lemaître: proceedings of a symposium in honour of G. Lemaître fifty years after his initiation of big-bang cosmology, Louvainla-Neuve, Belgium, 10–13 October 1983. — D. Reidel, 1984. — P. 387. — ISBN 978-90-277-1848-8
  15. Pope Pius XII Ai soci della Pontificia Accademia delle Scienze, 22 novembre 1951 - Pio XII, Discorsi (Italian). Tipografia Poliglotta Vaticana (2 ноября 1951). Архивировано из первоисточника 30 мая 2012. Проверено 23 февраля 2012.
  16. Константин Пархоменко Первый день Творения. Сотворение мира и человека.. Архивировано из первоисточника 23 ноября 2010. Проверено 22 июня 2012.
  17. Russell R.J. Cosmology: From Alpha to Omega. — Fortress Press, 2008. — ISBN 9780800662738
  18. Diane Morgan Essential Islam: a comprehensive guide to belief and practice. — ABC-CLIO, 2010.
  19. Helaine Selin Encyclopædia of the history of science, technology, and medicine in non-western cultures. — Springer Press, 1997.
  20. Sushil Mittal, G. R. Thursby The Hindu World. — Psychology Press, 2004.
  21. John R. Hinnells The Routledge companion to the study of religion. — Taylor & Francis, 2010.
  22. Sunil Sehgal Encyclopædia of Hinduism: T-Z, Volume 5. — Sarup & Sons, 1999.
  23. «Finite but unbounded universe… with no edge in space, no beginning or end in time.» Carl Sagan, Introduction to Hawking, Brief History of Time, p. x.
  24. Абдул-Баха. «Ответы на некоторые вопросы», гл. 47. Эта книга была впервые опубликована в 1908 г.

Литература

Ссылки