Функция Мёбиуса | это... Что такое Функция Мёбиуса? (original) (raw)

Функция Мёбиуса \mu(n)мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.

Содержание

Определение

\mu(n) определена для всех натуральных чисел n и принимает значения {-1,\;0,\;1} в зависимости от характера разложения числа n на простые сомножители:

По определению также полагают \mu(1)=1.

50 первых точек

Свойства и приложения

Функция Мёбиуса мультипликативна: для любых взаимно простых чисел a и b выполняется равенство \mu(ab)=\mu(a)\mu(b).

Сумма значений функции Мёбиуса по всем делителям целого числа n, не равного единице, равна нулю

\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}

Это, в частности, следует из того, что для всякого непустого конечного множества количество различных подмножеств состоящих из нечётного числа элементов равно количеству различных подмножеств состоящих из чётного числа элементов — факт, применяемый также в доказательстве формулы обращения Мёбиуса.

Функция Мёбиуса связана с функцией Мертенса отношением

M(n) = \sum_{k = 1}^n \mu(k).

Функция Мертенса в свою очередь тесно связана с задачей о нулях дзета-функции Римана, см. статью гипотеза Мертенса.

Обращение Мёбиуса

Первая формула обращения Мёбиуса

Для арифметических функций f и g,

g(n)=\sum_{d\,\mid\, n}f(d)

тогда и только тогда, когда

f(n)=\sum_{d\,\mid\, n}\mu(d)g(n/d).

Вторая формула обращения Мёбиуса

Для вещественнозначных функций f(x) и g(x), определенных при x\geqslant 1,

 g(x) = \sum_{n\leqslant x} f\left(\frac{x}{n}\right)

тогда и только тогда, когда

f(x) = \sum_{n\leqslant x}\mu(n) g\left(\frac{x}{n}\right).

Здесь сумма \sum_{n\leqslant x} интерпретируется как \sum_{n=1}^{\lfloor x\rfloor}.

См. также

Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 23 мая 2012.