Сортировка Шелла | это... Что такое Сортировка Шелла? (original) (raw)
Сортировка Шелла (англ. Shell sort) — алгоритм сортировки, являющийся усовершенствованным вариантом сортировки вставками. Идея метода Шелла состоит в сравнении элементов, стоящих не только рядом, но и на определённом расстоянии друг от друга. Иными словами — это сортировка вставками с предварительными «грубыми» проходами. Аналогичный метод усовершенствования пузырьковой сортировки называется сортировка расчёской.
Описание
При сортировке Шелла сначала сравниваются и сортируются между собой значения, отстоящие один от другого на некотором расстоянии (о выборе значения см. ниже). После этого процедура повторяется для некоторых меньших значений , а завершается сортировка Шелла упорядочиванием элементов при (то есть обычной сортировкой вставками). Эффективность сортировки Шелла в определённых случаях обеспечивается тем, что элементы «быстрее» встают на свои места (в простых методах сортировки, например, пузырьковой, каждая перестановка двух элементов уменьшает количество инверсий в списке максимум на 1, а при сортировке Шелла это число может быть больше).
Невзирая на то, что сортировка Шелла во многих случаях медленнее, чем быстрая сортировка, она имеет ряд преимуществ:
- отсутствие потребности в памяти под стек;
- отсутствие деградации при неудачных наборах данных — быстрая сортировка легко деградирует до O(n²), что хуже, чем худшее гарантированное время для сортировки Шелла.
История
Сортировка Шелла была названа в честь её изобретателя — Да Шелла, который опубликовал этот алгоритм в 1959 году.
Пример
Пусть дан список и выполняется его сортировка методом Шелла, а в качестве значений выбраны .
На первом шаге сортируются подсписки , составленные из всех элементов , различающихся на 5 позиций, то есть подсписки , , , , .
В полученном списке на втором шаге вновь сортируются подсписки из отстоящих на 3 позиции элементов.
Процесс завершается обычной сортировкой вставками получившегося списка.
Выбор длины промежутков
Среднее время работы алгоритма зависит от длин промежутков — , на которых будут находиться сортируемые элементы исходного массива ёмкостью на каждом шаге алгоритма. Существует несколько подходов к выбору этих значений:
Примечания
- ↑ J. Incerpi, R. Sedgewick, «Improved Upper Bounds for Shellsort», J. Computer and System Sciences 31, 2, 1985.
- ↑ Marcin Ciura Best Increments for the Average Case of Shellsort
Ссылки
- Д. Кнут. Искусство программирования. Том 3. Сортировка и поиск, 2-е изд. Гл. 5.2.1. ISBN 5-8459-0082-4
- Анимированное представление алгоритма сортировки Шелла
- Представление алгоритма сортировки Шелла в виде танца (видео)
Алгоритмы сортировки | |
---|---|
Теория | Сложность • О-нотация • Отношение порядка • Типы сортировки: Устойчивая • Внутренняя • Внешняя |
Алгоритмы | Обменные: Пузырьком • Перемешиванием • Гномья • Быстрая • Расчёской • Выбором: Выбором • Пирамидальная • Вставками: Вставками • Шелла • Деревом • Слиянием: Слиянием • Без дополнительной памяти • Без сравнений: Подсчётом • Поразрядная • Блочная • Гибридные: Introsort • Timsort • Прочее: Топологическая • Сети • Непрактичные: Bogosort • Stooge sort • Глупая • Блинная |