SRAM (память) | это... Что такое SRAM (память)? (original) (raw)

У этого термина существуют и другие значения, см. SRAM.

Типы компьютерной памяти
Энергозависимая
DRAM (в том числе DDR SDRAM) SRAM Перспективные T-RAM Z-RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ
Энергонезависимая
ПЗУ PROM EPROM EEPROM Флеш-память Первые разработки FRAM MRAM PRAM Перспективные CBRAM SONOS RRAM Беговая память (Racetrack) Nano-RAM Millipede Из истории Магнитный барабан Память на магнитных сердечниках Память на магнитной проволоке Пузырьковая память Память на твисторах

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние без регенерации, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM — random access memory) — возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM — sequential access memory).

Двоичная SRAM

Рис. 1. Шеститранзисторная ячейка статической двоичной памяти (бит) SRAM

Типичная ячейка статической двоичной памяти (двоичный триггер) на КМОП-технологии состоит из двух перекрёстно (кольцом) включённых инверторов и ключевых транзисторов для обеспечения доступа к ячейке (рис. 1.). Часто для увеличения плотности упаковки элементов на кристалле в качестве нагрузки применяют поликремниевые резисторы. Недостатком такого решения является рост статического энергопотребления.

Линия WL (Word Line) управляет двумя транзисторами доступа. Линии BL и BL (Bit Line) — битовые линии, используются и для записи данных и для чтения данных.

Запись. При подаче «0» на линию BL или BL параллельно включенные транзисторные пары (M5 и M1) и (M6 и M3) образуют логические схемы 2ИЛИ, последующая подача «1» на линию WL открывает транзистор M5 или M6, что приводит к соответствующему переключению триггера.

Чтение. При подаче «1» на линию WL открываются транзисторы M5 и M6, уровни записанные в триггере выставляются на линии BL и BL и попадают на схемы чтения.

Восьмитранзисторная ячейка двоичной SRAM описана в [1].

Переключение триггеров через транзисторы доступа является неявной логической функцией приоритетного переключения, которая в явном виде, для двоичных триггеров, строится на двухвходовых логических элементах 2ИЛИ-НЕ или 2И-НЕ. Схема ячейки с явным переключением является обычным RS-триггером. При явной схеме переключения линии чтения и записи разделяются, отпадает нужда в транзисторах доступа в схеме записи-чтения с неявным приоритетом(по 2 транзистора на 1 ячейку), но появляется нужда в схемах записи-чтения с явным приоритетом.

В настоящее время появилась усовершенствованная схема [2] с обратной связью отключаемой сигналом записи, которая не требует транзисторов нагрузки и соответственно избавлена от высокого потребления энергии при записи.

Троичная SRAM

Проблемы с содержанием статьи Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.Дополнительные сведения могут быть на странице обсуждения. (25 мая 2011)
Проблемы с содержанием статьи Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Проект троичной SRAM на трёхразрядных однозначных троичных триггерах описан в [3].

Один логический элемент 2ИЛИ-НЕ состоит из двух двухзатворных транзисторов (четырёх однозатворных), три — из шести (двенадцати однозатворных), плюс три транзистора доступа, всего — девять транзисторов (пятнадцать) на одну трёхбитную ячейку памяти (трит).

Преимущества

Недостатки

Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.

Применение

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM’ом же делают регистры и кеш-память.

См. также

Примечания

  1. http://www.citforum.ru/book/optimize/sdram.shtml Принципы функционирования SRAM. Крис Касперски
  2. http://timeinventor.com/news.php?readmore=118 D-триггер или ячейка регистра/памяти
  3. Троичная SRAM
  4. Компания MoSys продаёт DRAM со встроенным контроллером под маркой 1T-SRAM, но это, естественно, не делает её SRAM’ом.
Просмотр этого шаблона Микроконтроллеры
Архитектура 8-бит MCS-51MCS-48PICAVR • Z8 • H8 • COP8 • 68HC08 • 68HC11 16-бит MSP430 • MCS-96 • MCS-296 • PIC24 • MAXQ • Nios • 68HC12 • 68HC16 32-бит ARMMIPSAVR32PIC32 • 683XX • M32R • SuperHNios II • Am29000 • LatticeMico32 • MPC5xx • PowerQUICC • Parallax Propeller
Производители Analog DevicesAtmel • Silabs • FreescaleFujitsu • Holtek • HynixInfineonIntelMicrochip • Maxim • Parallax • NXP Semiconductors • Renesas • Texas InstrumentsToshiba • Ubicom • Zilog • Cypress
Компоненты РегистрПроцессорSRAMEEPROMФлеш-памятьКварцевый резонаторКварцевый генераторRC-генераторКорпус
Периферия ТаймерАЦПЦАПКомпараторШИМ-контроллер • СчётчикLCD • Датчик температуры • Watchdog Timer
Интерфейсы CANUARTUSBSPII²CEthernet1-Wire
ОС FreeRTOSμClinux • BeRTOS • ChibiOS/RT • eCosRTEMS • Unison • MicroC/OS-IINucleus
Программирование JTAG • C2 • ПрограмматорАссемблерПрерывание • MPLAB • AVR Studio • MCStudio