Кеплеровы элементы орбиты | это... Что такое Кеплеровы элементы орбиты? (original) (raw)
Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1)
Части эллипса (рис.2)
Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:
Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию плоскости орбиты по отношению к базовой системе координат, шестой — положение тела на орбите.
Содержание
- 1 Большая полуось
- 2 Эксцентриситет
- 3 Наклонение
- 4 Аргумент перицентра
- 5 Долгота восходящего узла
- 6 Средняя аномалия
- 7 Вычисление кеплеровых элементов
- 8 Примечания
- 9 См. также
Большая полуось
Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как
). В астрономии характеризует среднее расстояние небесного тела от фокуса
Эксцентриситет
Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.[1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:
, где
— малая полуось (см. рис.2)
Можно разделить внешний вид орбиты на пять групп:
Наклонение
A — Объект
B — Центральный объект
C — Плоскость отсчёта
D — Плоскость орбиты
i — Наклонение
Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).
Обычно обозначается буквой i (от англ. inclination). Наклонение измеряется в угловых градусах, минутах и секундах.
Если °, то движение небесного тела называется прямым[2].
Если °
°, то движение небесного тела называется обратным.
- В применении к Солнечной системе, за плоскость отсчёта обычно выбирают плоскость орбиты Земли (плоскость эклиптики). Плоскости орбит других планет Солнечной системы и Луны отклоняются от плоскости эклиптики лишь на несколько градусов.
- Для искусственных спутников Земли за плоскость отсчёта обычно выбирают плоскость экватора Земли.
- Для спутников других планет Солнечной системы за плоскость отсчёта обычно выбирают плоскость экватора соответствующей планеты.
- Для экзопланет и двойных звёзд за плоскость отсчёта принимают картинную плоскость.
Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла.
Аргумент перицентра
Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.
Обозначается ().
Долгота восходящего узла
Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, базовая плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия); угол измеряется от направления на нулевую точку против часовой стрелки.
Восходящий узел обозначается ☊, или Ω.
Средняя аномалия
Анимация, иллюстрирующая истинную аномалию, эксцентрическую аномалию, среднюю аномалию и решение уравнения Кеплера.
Аномалии (рис.3)
Средняя аномалия для тела, движущегося по невозмущённой орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.
Обозначается буквой (от англ. mean anomaly)
В звёздной динамике средняя аномалия вычисляется по следующим формулам:
где:
Либо через уравнение Кеплера:
где:
Вычисление кеплеровых элементов
Рассмотрим следующую задачу: пусть имеется невозмущённое движение и известны вектор положения и вектор скорости
на момент времени
. Найдём кеплеровы элементы орбиты.
Прежде всего, вычислим большую полуось:
По интегралу энергии:
(1) , где k — гравитационный параметр равный произведению гравитационной постоянной на массу небесного тела, для Земли K = 3,986005·105 км³/c², для Солнца K = 1,32712438·1011 км³/c².
Следовательно, по формуле (1) находим .
Примечания
- ↑ А. В. Акопян, А. А. Заславский Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
- ↑ То есть, объект движется вокруг Солнца в том же направлении, что и Земля