Хеширование | это... Что такое Хеширование? (original) (raw)
Хеш-функция, отображающая множество имён в множество натуральныых чисел
Хеширование (иногда «хэширование», англ. hashing) — преобразование по детерменированному алгоритму входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или сводкой сообщения (англ. message digest). Если у двух строк хеш-коды разные, строки гарантированно различаются, если одинаковые — строки, вероятно, совпадают.
Хеширование применяется для построения ассоциативных массивов, поиска дубликатов в сериях наборов данных, построения достаточно уникальных идентификаторов для наборов данных, контрольное суммирование с целью обнаружения случайных или намеренных ошибок при хранении или передаче, для хранения паролей в системах защиты (в этом случае доступ к области памяти, где находятся пароли, не позволяет восстановить сам пароль), при выработке электронной подписи (на практике часто подписывается не само сообщение, а его хеш-образ).
В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов входного массива; существует множество массивов с разным содержимым, но дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.
Существует множество алгоритмов хеширования с различными свойствами (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.
Содержание
- 1 История
- 2 Виды хеш-функций
- 3 Методы борьбы с коллизиями
- 4 Применение хеш-функций
- 5 Примечания
- 6 Литература
- 7 Ссылки
История
Дональд Кнут относит первую систематическую идею хеширования к сотруднику IBM Хансу Петеру Луну (нем. Hans Peter Luhn), предложившему хеш-кодирование в январе 1953 года.
В 1956 году Арнольд Думи (англ. Arnold Dumey) в своей работе «Computers and automation» первым представил концепцию хеширования таковой, какой её знает большинство программистов сейчас. Думи рассматривал хеширование, как решение «Проблемы словаря», а также предложил использовать в качестве хеш-адреса остаток деления на простое число.[1]
Первой серьёзной работой, связанной с поиском в больших файлах, была статья Уэсли Питерсона (англ. W. Wesley Peterson) в IBM Journal of Research and Development 1957 года, в которой он определил открытую адресацию, а также указал на ухудшение производительности при удалении. Спустя шесть лет был опубликована работа Вернера Бухгольца (нем. Werner Buchholz), в которой проведено обширное исследование хеш-функций. В течение нескольких последующих лет хеширование широко использовалось, однако не было опубликовано никаких значимых работ.
В 1967 году хеширование в современном значении упомянуто в книге Херберта Хеллермана «Принципы цифровых вычислительных систем»[2]. В 1968 году Роберт Моррис (англ. Robert Morris) опубликовал в Communications of the ACM большой обзор по хешированию, эта работа считается ключевой публикацией, вводящей понятие о хешировании в научный оборот и закрепившей ранее применявшийся только в жаргоне специалистов термин «хеш».
До начала 1990-х годов в русскоязычной литературе в качестве эквивалента термину «хеширование» благодаря работам Андрея Ершова использовалось слово «расстановка», а для коллизий использовался термин "конфликт" (Ершов использовал «расстановку» с 1956 года, в русскоязычном издании книги Вирта «Алгоритмы и структуры данных» 1989 года также используется термин «расстановка»). Предлагалось также назвать метод русским словом «окрошка». Однако ни один из этих вариантов не прижился, и в русскоязычной литературе используется преимущественно термин «хеширование».[3]
Виды хеш-функций
Хорошая хеш-функция должна удовлетворять двум свойствам:
- Быстро вычисляться;
- Минимизировать количество коллизий
Предположим, для определённости, что количество ключей , а хеш-функция
имеет не более
различных значений:
В качестве примера «плохой» хеш-функции можно привести функцию с , которая десятизначному натуральном числу
сопоставляет три цифры выбранные из середины двадцатизначного квадрата числа
. Казалось бы значения хеш-кодов должны равномерно распределиться между «000» и «999», но для реальных данных такой метод подходит лишь в том случае, если ключи не имеют большого количества нулей слева или справа.[3]
Однако существует несколько более простых и надежных методов, на которых базируются многие хеш-функции.
Хеш-функции основанные на делении
Первый метод заключается в том, что мы используем в качестве хеша остаток от деления на , где
это количество всех возможных хешей:
При этом очевидно, что при чётном значение функции будет чётным, при чётном
, и нечётным — при нечётном, что может привести к значительному смещению данных в файлах. Также не следует использовать в качестве
степень основания счисления компьютера, так как хеш-код будет зависеть только от нескольких цифр числа
, расположенных справа, что приведет к большому количеству коллизий. На практике обычно выбирают простое
— в большинстве случаев этот выбор вполне удовлетворителен.
Ещё следует сказать о методе хеширования, основанном на делении на полином по модулю два. В данном методе также должна являться степенью двойки, а бинарные ключи (
) представляются в виде полиномов. В этом случае в качестве хеш-кода берутся значения коэффциентов полинома, полученного как остаток от деления
на заранее выбранный полином
степени
:
При правильном выборе такой способ гарантирует отсутствие коллизий между почти одинаковыми ключами.[3]
Мультипликативная схема хеширования
Второй метод состоит в выборе некоторой целой константы , взаимно простой с
, где
— количество представимых машинным словом значений (в компьютерах IBM PC
). Тогда можем взять хеш-функцию вида:
В этом случае, на компьютере с двоичной системой счисления, является степенью двойки и
будет состоять из старших битов правой половины произведения
.
Среди преимуществ этих двух методов стоит отметь, что они выгодно используют то, что реальные ключи неслучайны, например в том случае если ключи представляют собой арифметическую прогрессию (допустим последовательность имён «ИМЯ1», «ИМЯ2», «ИМЯ3»). Мультипликативный метод отобразит арифметическую прогрессию в приближенно арифметическую прогрессию различных хеш-значений, что уменьшает количество коллизий по сравнению со случайной ситуацией.[3]
Одной из вариаций данного метода является хеширование Фибоначчи, основанное на свойствах золотого сечения. В качестве здесь выбирается ближайшее к
целое число, взаимно простое с
[3]
Хеширование строк переменной длины
Вышеизложенные методы применимы и в том случае, если нам необходимо рассматривать ключи, состоящие из нескольких слов или ключи переменной длины. Например можно скомбинировать слова в одно при помощи сложения по модулю или операции «исключающее или». Одним из алгоритмов, работающих по такому принципу является хеш-функция Пирсона.
Хеширование Пирсона (англ. Pearson hashing) — алгоритм, предложенный Питером Пирсоном (англ. Peter Pearson) для процессоров с 8-битными регистрами, задачей которого является быстрое вычисление хеш-кода для строки произвольной длины. На вход функция получается слово , состоящее из
символов, каждый размером 1 байт, и возвращает значение в диапазоне от 0 до 255. Причем значение хеш-кода зависит от каждого символа входного слова.
Алгоритм можно описать следующим псевдокодом, который получает на вход строку и использует таблицу перестановок
h := 0 **for each** c **in** W **loop** index := h **xor** c h := T[index] **end loop** **return** h
Среди преимуществ алгоритма следует отметить:
- Простоту вычисления;
- Не существует таких входных данных, для которых вероятность коллизии наибольшая;
- Возможность модификации в идеальную хеш-функцию.[4]
В качестве альтернативного способа хеширования ключей, состоящих из
символов (
), можно предложить вычисление
Идеальное хеширование
Идеальной хеш-функцией (англ. Perfect hash function) называется такая функция, которая отображает каждый ключ из набора в множество целых чисел без коллизий. В математических терминах это инъективное отображение.
Описание
- Функция
называется идеальной хеш-функцией для
, если она инъективна на
;
- Функция
называется минимальной идеальной хеш-функцией для
, если она является ИХФ и
;
- Для целого
, функция
называется
-идеальной хеш-функцией (k-PHF) для
если для каждого
имеем
.
Идеальное хеширование применяется в тех случаях, когда мы хотим присвоить уникальный идентификатор ключу, без сохранения какой-либо информации о ключе. Одним из наибоее очевидных примеров использования идеального (или скорее k-идеального) хеширования является ситуация, когда мы распологаем небольшой быстрой памятью, где размещаем значения хешей, связанных с данными хранящимися в большой, но медленной памяти. Причем размер блока можно выбрать таким, что необходимые нам данные, хранящиеся в медленной памяти, будут получены за один запрос. Подобный подход используется, например, в аппаратных маршрутизаторах. Также идеальное хеширование используется для ускорения работы алгоритмов на графах, в тех случаях, когда представление графа не умещается в основной памяти. [5]
Универсальное хеширование
Универсальным хешированием (англ. Universal hashing) называется хеширование, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Использование универсального хеширования обычно обеспечивает низкое число коллизий. Универсальное хеширование имеет множество применений, например, в реализации хеш-таблиц и криптографии.
Описание
Предположим, что мы хотим отобразить ключи из пространства в числа
. На входе алгоритм получает некоторый набор данных
и размерностью
, причем неизвестный заранее. Как правило целью хеширования является получение наименьшего числа коллизий, чего трудно добиться используя какую-то определенную хеш-функцию.
В качестве решения такой проблемы можно выбирать функцию случайным образом из определенного набора, называемого универсальным семейством .[6]
Методы борьбы с коллизиями
Как уже говорилось выше, коллизией (иногда конфликтом[1] или столкновением) хеш-функции называются такие два входных блока данных, которые дают одинаковые хеш-коды.
В хеш-таблицах
Большинство первых работ описывающих хеширование было посвящено методам борьбы с коллизиями в хеш-таблицах, так как хеш-функции применялись для поиска в больших файлах. Существует два основных метода используемых в хеш-таблицах:
- Метод цепочек(метод прямого связывания)
- Метод открытой адресации
Первый метод заключается в поддержке связных списков, по одному на каждое значение хеш-функции. В списке хранятся ключи, дающие одинаковое значение хеш-кодов. В общем случае, если мы имеем
ключей и
списков, средний размер списка будет
и хеширование приведет к уменьшению среднего количества работы по сравнению с последовательным поиском примерно в
раз.
Второй метод состоит в том, что в массиве таблицы хранятся пары ключ-значение. Таким образом мы полностью отказываемся от ссылок и просто просматриваем записи таблицы, пока не найдем нужный ключ или пустую позицию. Последовательность, в которой просматриваются ячейки таблицы называется последовательностью проб.[3]
Криптографическая соль
Существует несколько способов для защиты от подделки паролей и подписей, работающих даже в том случае, если криптоаналитику известны способы построения коллизий для используемой хеш-функции. Одним из таких методов является добавление криптографической соли (строки случайных данных) к входным данным (иногда «соль» добавляется и к хеш-коду), что значительно затрудняет анализ итоговых хеш-таблиц. Данный метод, к примеру, используется для хранения паролей в UNIX-подобных операционных системах.
Применение хеш-функций
Хеш-функции широко используются в криптографии, а также во многих структурах данных — хеш-таблицаx, фильтрах Блума и декартовых деревьях.
Криптографические хеш-функции
Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии, так как на них накладываются дополнительные требования. Для того чтобы хеш-функция считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:
Данные требования не являются независимыми:
- Обратимая функция нестойка к коллизиям первого и второго рода.
- Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.
Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.
Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно вычислений хеш-функции. Поэтому _n_-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка к
.
Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования, хеширующих пользовательский пароль для получения ключа.[7]
Хеширование часто используется в алгоритмах электронно-цифровой подписи, где шифруется не само сообщение, а его хеш-код, что уменьшает время вычисления, а также повышает криптостойкость. Также в большинстве случаев, вместо паролей хранятся значения их хеш-кодов.
Контрольные суммы
Несложные, крайне быстрые и легко осуществимые аппаратные алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры. С точки зрения математики является хеш-функцией, которая вычисляет контрольный код, применяемый для обнаружения ошибок при передаче и хранении информации
По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратном исполнении.
Платой за столь высокую скорость является отсутствие криптостойкости — лёгкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.
Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.
Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклических избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в устройствах Ethernet и в формате сжатия данных ZIP.
Контрольная сумма, например, может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.
Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Данный метод легко дополнить до защиты от фальсификации передаваемой информации (метод MAC). В этом случае хеширование производится криптостойкой функцией над сообщением, объединенным с секретным ключом, известным только отправителю и получателю сообщения. Таким образом, криптоаналитик не сможет восстановить код по перехваченному сообщению и значению хеш-функции, то есть, не сможет подделать сообщение (См. имитозащита).
Геометрическое хеширование
Геометрическое хеширование (англ. Geometric hashing) – широко применяемый в компьтерной графике и вычислительной геометрии метод для решения задач на плоскости или в трёхмерном пространстве, например для нахождения ближайших пар в множестве точек или для поиска одинаковых изображений. Хеш-функция в данном методе обычно получает на вход какое-либо метрическое пространство и разделяет его, создавая сетку из клеток. Таблица в данном случае является массивом с двумя или более индексами и называется файл сетки(англ. Grid file). Геометрическое хеширование также применяется в телекоммуникациях при работе с многомерными сигналами.[8]
Ускорение поиска данных
Хеш-таблицей называется структура данных, позволяющая хранить пары вида (ключ,хеш-код) и поддерживающая операции поиска, вставки и удаления элемента. Задачей хеш-таблиц является ускорение поиска, например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).
Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.
Примечания
- ↑ 1 2 Никлаус Вирт.Алгоритмы и структуры данных
- ↑ Herbert Hellerman. Digital Computer System Principles. N.Y.: McGraw-Hill, 1967, 424 pp.
- ↑ 1 2 3 4 5 6 7 Дональд Кнут. Искусство программирования
- ↑ Pearson, Peter K. (June 1990), "«Fast Hashing of Variable-Length Text Strings»", Communications of the ACM Т. 33 (6): 677, doi:10.1145/78973.78978, <http://portal.acm.org/citation.cfm?id=78978>
- ↑ Djamal Belazzougui, Fabiano C. Botelho, Martin Dietzfelbinger (2009). «Hash, displace, and compress» (PDF) (Springer Berlin / Heidelberg). Проверено 2011-08-11.
- ↑ Miltersen, Peter Bro Universal Hashing (PDF). Архивировано из первоисточника 24 июня 2009.
- ↑ Брюс Шнаейр, Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си
- ↑ Wolfson, H.J. & Rigoutsos, I (1997). Geometric Hashing: An Overview. IEEE Computational Science and Engineering, 4(4), 10-21.
Литература
- Брюс Шнайер "Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си". — М.: Триумф, 2002. — ISBN 5-89392-055-4
- Дональд Кнут Искусство программирования, том 3. Сортировка и поиск = The Art of Computer Programming, vol.3. Sorting and Searching. — 2-е изд. — М.: «Вильямс», 2007. — С. 824. — ISBN 0-201-89685-0
- Никлаус Вирт "Алгоритмы и структуры данных". — М.: Мир, 1989. — ISBN 5-03-001045-9
Ссылки
![]() |
|
---|---|
Общего назначения | Adler-32 • CRC • FNV • Murmur2 • PJW-32 • TTH • Jenkins hash |
Криптографические | JH • HAVAL • Keccak • LM-хеш • MD2 • MD4 • MD5 • MD6 • N-Hash • RIPEMD-128 • RIPEMD-160 • RIPEMD-256 • RIPEMD-320 • SHA-1 • SHA-2 • Skein • Snefru • Tiger • Whirlpool • ГОСТ Р 34.11-94 |