Химические источники тока | это... Что такое Химические источники тока? (original) (raw)

Химические источники тока

Хими́ческие исто́чники то́ка (аббр. ХИТ) — устройства, в которых энергия протекающих в них химических реакций непосредственно превращается в электрическую энергию.

Содержание

История создания

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта — сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая впоследствии была названа Вольтовым столбом. Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниэля».

В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах.

В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств.

В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

Принцип действия

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

Классификация

По возможности или невозможности повторного использования химические источники тока делятся на:

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

По типу используемого электролита химические источники тока делятся на кислотные (например свинцово-кислотный аккумулятор, свинцово-плавиковый элемент), щелочные (например ртутно-цинковый элемент, ртутно-кадмиевый элемент, никель-цинковый аккумулятор, никель-кадмиевый аккумулятор) и солевые (например, марганцево-магниевый элемент, цинк-хлорный аккумулятор).

Некоторые виды химических источников тока

Гальванические элементы

Смотри также Категория:Гальванические элементы.

Тип Катод Электролит Анод Напряжение,В
Марганцево-цинковый элемент MnO2 KOH Zn 1.56
Марганцево-оловянный элемент MnO2 KOH Sn 1.65
Марганцево-магниевый элемент MnO2 MgBr Mg 2.00
Свинцово-цинковый элемент PbO2 H2SO4 Zn 2.55
Свинцово-кадмиевый элемент PbO2 H2SO4 Cd 2.42
Свинцово-хлорный элемент PbO2 HClO4 Pb 1.92
Ртутно-цинковый элемент HgO KOH Zn 1.36
Ртутно-кадмиевый элемент HgO2 KOH Cd 1.92
Окисно-ртутно-оловянный элемент HgO2 KOH Sn 1.30
Хром-цинковый элемент K2Cr2O7 H2SO4 Zn 1.8—1.9

Другие типы:

Аккумуляторы

Смотри также Категория:Аккумуляторы.

Топливные элементы

Смотри также Категория:Топливные элементы.

Ссылки

Химические источники тока
Первичные элементы Гальванический элемент Даниеля | Щелочной аккумулятор Ртутно-цинковый элемент Марганцево-цинковый элемент Серебряно-цинковый аккумулятор Воздушно-цинковый элемент Galvanic cell
Электрические аккумуляторы Свинцово-кислотный аккумулятор | Никель-кадмиевый аккумулятор Никель-металл-гидридный аккумулятор Никель-водородный аккумулятор Литий-ионный аккумулятор Литий-полимерный аккумулятор Литий-титанатный аккумулятор Ванадиевый аккумулятор
Топливные элементы Прямой метанольный топливный элемент | Твердооксидный топливный элемент Щелочной топливный элемент
Модели Батарея | Электрический аккумулятор Концентрационный гальванический элемент Топливный элемент
Устройство Анод | Катод Электролит
Статьи, относящиеся к электролизу
Начала электролиза Химические источники токаЗаконы ФарадеяСтандартный электродный потенциал
Электролитические процессы
Материалы, сделанные электролизом АлюминийМеталлический кальцийХлорФторВодородМеталлический литийМагнийМеталлический калийМеталлический натрийГидроксид натрияЦинк
См. также Электрохимия

Wikimedia Foundation.2010.