Топливный элемент | это... Что такое Топливный элемент? (original) (raw)

Топливный элементэлектрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне[1] — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.

Естественным топливным элементом является митохондрия живой клетки. Митохондрии перерабатывают органическое «горючее» — пируваты и жирные кислоты, синтезируя АТФ — универсальный источник энергии для всех биохимических процессов в живых организмах, одновременно создавая разность электрических потенциалов на своей внешней мембране. Однако, копирование этого процесса для получения электроэнергии в промышленных масштабах лишено смысла, т.к. на долю электрической разности потенциалов приходятся ничтожная доля химической энергии исходных веществ: почти вся энергия передаётся молекулам АТФ.

Содержание

Устройство ТЭ

Топливные элементы — это электрохимические устройства, которые теоретически могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %)[источник не указан 1071 день].

КПД, определённый по теплоте химической реакции, может быть и выше 100 % из-за того, что в работу может превращаться и теплота окружающей среды[2]. Здесь, тем не менее, нет никакого противоречия с ограничениями на КПД тепловых машин, поскольку топливные элементы не работают по замкнутому циклу, и реагирующие вещества не возвращаются в начальное состояние. При химической реакции в топливном элементе в электрическую энергию превращается, в конечном счёте, не теплота реагентов, а их внутренняя энергия и, возможно, некоторое количество теплоты из окружающей среды.

Принцип разделения потоков топлива и окислителя

Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент) или метанол и кислород воздуха. В отличие от топливных элементов, одноразовые гальванические элементы и аккумуляторы содержат расходуемые твердые или жидкие реагенты, масса которых ограничена объёмом батарей, и когда электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, по крайней мере, в них нужно поменять израсходованные электроды и загрязнённый электролит. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая их «отравлением» побочными продуктами недостаточно чистых исходных веществ.

Пример водородно-кислородного топливного элемента

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом») содержит протонопроводящую полимерную мембрану, которая разделяет два электродаанод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесенным катализаторомплатиной, или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Протоны проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.[источник не указан 710 дней]

Мембрана

Мембрана обеспечивает проводимость протонов, но не электронов. Она может быть полимерной (Нафион (Nafion), полибензимидазол и др.) или керамической (оксидной и др.). Впрочем, существуют ТЭ и без мембраны[3].

Анодные материалы и катализаторы

Катодные материалы и катализаторы

Типы топливных элементов

Метанольный топливный элемент в Mercedes Benz Necar 2

История

История исследований в СССР и России

Question book-4.svg В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 12 мая 2011.

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в 60-х годах. РКК «Энергия»1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по 2005 «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт топливные элементы.

В 70-80 годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано[4] Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению[5] 4 мая 2005 году Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твердым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр»[6], ГМК «Норильский никель» ликвидирует[7] компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведется, появятся, видимо, в 20102015 годах.

Применение топливных элементов

Стационарные приложения

Транспорт

автомобильные топливные элементы Honda, см Honda FCX

Бортовое питание

Мобильные устройства

Полная статья Водородная энергетика.

Преимущества водородных топливных элементов

Топливные элементы обладают рядом ценных качеств, среди которых

Высокий КПД

Экологичность

В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды.

Компактные размеры

Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. [источник не указан 793 дня] Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Проблемы топливных элементов

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» — зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Проблема отравления катализатора и долговечности мембраны решается созданием элемента с механизмами самовосстановления — регенерация ферментов-катализаторов[источник не указан 528 дней].

Топливные элементы, в силу низкой скорости химических реакций, обладают значительной[источник не указан 710 дней] инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи).

Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Из простых химических элементов водород и углерод являются крайностями. У водорода самая большая удельная теплота сгорания, но очень низкая плотность и высокая химическая активность. У углерода самая высокая удельная теплота сгорания среди твердых элементов, достаточно высокая плотность, но низкая химическая активность из-за энергии активации. Золотая середина — углевод (сахар) или его производные (этанол) или углеводороды (жидкие и твердые). Выделяемый углекислый газ должен участвовать в общем цикле дыхания планеты, не превышая предельно допустимых концентраций.

Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика, Производство водорода). Например, средняя цена электроэнергии в США выросла в 2007 г. до 0,09за[кВт⋅ч](16142),тогдакаксебестоимостьэлектроэнергии,произведённойизветра,составляет0,09 за кВт·ч, тогда как себестоимость электроэнергии, произведённой из ветра, составляет 0,09за[кВтч](16142),тогдакаксебестоимостьэлектроэнергии,произведённойизветра,составляет0,04—$0,07 (см. Ветроэнергетика или AWEA). В Японии киловатт-час электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. То есть с ростом цен на энергоносители производство водорода электролизом воды становится более конкурентоспособным.

К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО и сероводород, отравляющие катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160 °C в топливе может присутствовать 1 % СО.

К недостаткам топливных элементов с платиновыми катализаторами можно отнести высокую стоимость платины, сложности с очисткой водорода от вышеупомянутых примесей, и как следствие, дороговизну газа, ограниченный ресурс элемента вследствие отравления катализатора примесями. Кроме того, платина для катализатора — невозобновляемый ресурс. Считается, что её запасов хватит на 15-20 лет производства элементов[9].

В качестве альтернативы платиновым катализаторам исследуется возможность применения ферментов. Ферменты являются возобновляемым материалом, они дешевы, не отравляются основными примесями в дешевом топливе. Обладают специфическими преимуществами[9]. Нечувствительность ферментов к CO и сероводороду сделала возможным получение водорода из биологических источников, например, при конверсии органических отходов.

См. также

Примечания

  1. ГОСТ 15596-82 Источники тока химические. Термины и определения
  2. И. П. Базаров. Термодинамика, М., 1983.
  3. http://www.membrana.ru/lenta/?4431 Изобретён топливный элемент без мембраны
  4. http://isjaee.hydrogen.ru/pdf/02_07_NIK%20NEP.pdf
  5. «Новые энергетические проекты» оценили водородные разработки томского политеха. REGNUM (20 июня 2005). Архивировано из первоисточника 25 августа 2011. Проверено 14 августа 2010.
  6. MFD.RU | Финансовый портал — котировки акций, курсы валют, форум трейдеров, аналитика и новости
  7. «Норникель» ликвидирует компанию «Новые энергетические проекты» | Финансовые новости на MFD.RU
  8. Топливный элемент на alldc.ru
  9. 1 2 Патент РФ RU2229515 Водород-кислородный топливный элемент на основе иммобилизованных ферментов

Ссылки

commons: Топливный элемент на Викискладе?
Просмотр этого шаблона Химические источники тока
Гальванический элемент Гальванический элемент Даниеля | Щелочной элемент Ртутно-цинковый элемент Сухой элемент Концентрационный элемент Воздушно-цинковый элемент Нормальный элемент Вестона
Электрические аккумуляторы Свинцово-кислотный | Серебряно-цинковый Никель-кадмиевый Никель-металл-гидридный Никель-цинковый аккумулятор Литий-ионный Литий-полимерный Литий-железо-сульфидный Литий-железо-фосфатный Литий-титанатный Ванадиевый Железо-никелевый
Топливные элементы Прямой метанольный | Твердооксидный Щелочной
Модели Батарея | Электрический аккумулятор Топливный элемент
Устройство Анод | Катод Электролит
Просмотр этого шаблона Энергетика структура по продуктам и отраслям
Электроэнергетика: электроэнергия Традиционная Тепловые электростанции Конденсационная электростанция (КЭС)Теплоэлектроцентраль (ТЭЦ) Гидроэнергетика Гидроэлектростанция (ГЭС)Гидроаккумулирующая электростанция (ГАЭС) Атомная Атомная электростанция (АЭС)Плавучая атомная электростанция (ПАТЭС) Альтернативная Геотермальная Геотермальные электростанции (ГеоТЭС) Гидроэнергетика Малые гидроэлектростанции (МГЭС)Приливные электростанции (ПЭС)Волновые электростанцииОсмотические электростанции Ветроэнергетика Ветряные электростанции (ВЭС) Солнечная Солнечные электростанции (СЭС) Водородная Водородные электростанции • Установки на топливных элементах Биоэнергетика Биоэлектростанции (БиоТЭС) Малая Дизельные электростанцииГазопоршневые электростанцииГазотурбинные установки малой мощности • Бензиновые электростанции Электрическая сеть Электрические подстанцииЛинии электропередачи (ЛЭП)Опоры линий электропередачи Energetics symbol.svg
Теплоснабжение: теплоэнергия Централизованное Теплоэлектроцентрали (ТЭЦ)КотельныеАтомные электростанции (АЭС) • Атомные электростанции теплоснабжения (АСТ) • Геотермальные электростанции (ГеоТЭС) • Биоэлектростанции (БиоТЭС) Децентрализованное Малые котельныеМини-ТЭЦТелонасосные установкиЭлектронагревателиПечи Тепловая сеть Тепловые пунктыТеплотрассы
Топливная промышленность: топливо Органическое Газообразное Природный газГенераторный газКоксовый газДоменный газ • Продукты перегонки нефти • Газ подземной газификации • Синтез-газ Жидкое НефтьБензинКеросинСоляровое маслоМазут Твёрдое Ископаемое Бурый угольКаменный угольАнтрацитГорючий сланецТорф Растительное Дрова • Древесные отходы • Биомасса Искусственное Древесный угольПеллеты • Кокс (каменноугольный, торфяной, полукокс) • Углебрикеты • Отходы углеобогащения Ядерное УранMOX-топливо
Перспективнаяэнергетика: Энергетика Термоядерная энергетикаКосмическая энергетика Топливо ПлутонийТорийДейтерийТритийГелий-3Бор-11
Портал: Энергетика