Алгоритм Дейкстры | это... Что такое Алгоритм Дейкстры? (original) (raw)
Блок схема алгоритма Дейкстры.
Алгоритмы поиска на графах |
---|
A* B* Алгоритм Беллмана — Форда Двунаправленный поиск Алгоритм Дейкстры Алгоритм Джонсона Поиск в ширину Поиск в глубину Поиск с ограничением глубины Поиск по первому наилучшему совпадению Алгоритм Флойда — Уоршелла |
Алгори́тм Де́йкстры (Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов.
Содержание
- 1 Формулировка задачи
- 2 Неформальное объяснение
- 3 Алгоритм
- 4 См. также
- 5 Ссылки
- 6 Литература
- 7 Примечания
Формулировка задачи
Примеры
Вариант 1. Дана сеть автомобильных дорог, соединяющих города Московской области. Некоторые дороги односторонние. Найти кратчайшие пути от города Москва до каждого города области (если двигаться можно только по дорогам).
Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.
Формальное определение
Дан взвешенный ориентированный[1] граф без петель и дуг отрицательного веса[2]. Найти кратчайшие пути от некоторой вершины графа до всех остальных вершин этого графа.
Неформальное объяснение
Каждой вершине из V сопоставим метку — минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.
Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.
Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.
Пример
Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.
Кружками обозначены вершины, линиями — пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» — длина пути. Рядом с каждой вершиной красным обозначена метка — длина кратчайшего пути в эту вершину из вершины 1.
Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.
Первый по очереди сосед вершины 1 — вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению её метки, и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.
Аналогичную операцию проделываем с двумя другими соседями 1-й вершины — 3-й и 6-й.
Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.
Второй шаг. Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.
Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.
Первый (по порядку) сосед вершины 2 — вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.
Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9<17, поэтому метка не меняется.
Ещё один сосед вершины 2 — вершина 4. Если идти в неё через 2-ю, то длина такого пути будет равна сумме кратчайшего расстояния до 2-й вершины и расстояния между вершинами 2 и 4, то есть 22 (7 + 15 = 22). Поскольку 22<, устанавливаем метку вершины 4 равной 22.
Все соседи вершины 2 просмотрены, замораживаем расстояние до неё и помечаем её как посещенную.
Третий шаг. Повторяем шаг алгоритма, выбрав вершину 3. После её «обработки» получим такие результаты:
Дальнейшие шаги. Повторяем шаг алгоритма для оставшихся вершин. Это будут вершины 6, 4 и 5, соответственно порядку.
Завершение выполнения алгоритма. Алгоритм заканчивает работу, когда нельзя больше обработать ни одной вершины. В данном примере все вершины зачеркнуты, однако ошибочно полагать, что так будет в любом примере - некоторые вершины могут остаться незачеркнутыми, если до них нельзя добраться. Результат работы алгоритма виден на последнем рисунке: кратчайший путь от вершины 1 до 2-й составляет 7, до 3-й — 9, до 4-й — 20, до 5-й — 20, до 6-й — 11.
Алгоритм
Обозначения
Псевдокод
Присвоим
Для всех
отличных от
присвоим
Пока
Пусть
— вершина с минимальным
занесём
в
Для всех
таких, что
если
то
изменим
изменим
Описание
В простейшей реализации для хранения чисел _d_[_i_] можно использовать массив чисел, а для хранения принадлежности элемента множеству U — массив булевых переменных.
В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.
На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины . Если в них (в ) расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G не связан.
Доказательство корректности
Пусть l(v) — длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z).
База. Первой посещается вершина a. В этот момент d(a)=l(a)=0.
Шаг. Пускай мы выбрали для посещения вершину . Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P — кратчайший путь из a в z, y — первая непосещённая вершина на P, x — предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x)+w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x)+w(xy)=l(x)+w(xy)=l(y). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, её метка минимальна среди непосещённых, то есть . Комбинируя это с , имеем d(z)=l(z), что и требовалось доказать.
Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.
Сложность алгоритма
Сложность алгоритма Дейкстры зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через n количество вершин, а через m — количество ребер в графе G.
скрытые константы в асимптотических оценках трудоемкости велики и использование фибоначчиевых куч редко оказывается целесообразным: обычные двоичные (d-ичные (англ.)) кучи на практике эффективнее.
Альтернативами им служат толстые кучи, тонкие кучи и кучи Бродала (англ.), обладающие теми же асимптотическими оценками, но меньшими константами.[4]
См. также
- Алгоритм Беллмана — Форда — решение той же задачи, если граф может содержать и рёбра отрицательного веса
- Алгоритм Флойда — Уоршелла — поиск кратчайших расстояний между всеми парами вершин
- Алгоритм Джонсона
- Алгоритм Левита — решение той же задачи, но другим способом.
Ссылки
- Иллюстрированное описание алгоритма Дейкстры (eng.)
- algolist.manual.ru
- C. Анисимов. Как построить кратчайший маршрут между двумя точками.
- Реализация простейшего варианта алгоритма Дейкстры на e-maxx.ru
- Реализация варианта алгоритма Дейкстры для разреженных графов на e-maxx.ru
- Реализация на основе очереди с приоритетами на C++
- Реализация на основе очереди с приоритетами на Java
Литература
- E. W. Dijkstra. A note on two problems in connexion with graphs. // Numerische Mathematik. V. 1 (1959), P. 269-271
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1
- Ананий В. Левитин Глава 9. Жадные методы: Алгоритм Дейкстры // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Aigorithms. — М.: «Вильямс», 2006. — С. 189—195. — ISBN 0-201-74395-7
Примечания
- ↑ Здесь частным случаем ориентированного графа являются неориентированный и смешенный («частично ориентированный») графы.
- ↑ Для графа с отрицательными весами применяется более общий алгоритм — Алгоритм Дейкстры с потенциалами
- ↑ Курс: Структуры данных и ..: Лекция № 7: Биномиальные и фибоначчиевы кучи // INTUIT.ru
- ↑ Курс: Структуры данных и ..: Лекция № 8: Тонкие кучи // INTUIT.ru