LLVM: lib/CodeGen/MachineScheduler.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

13

51#include "llvm/Config/llvm-config.h"

61#include

62#include

63#include

64#include

65#include

66#include

67#include

68#include

69#include

70#include

71

72using namespace llvm;

73

74#define DEBUG_TYPE "machine-scheduler"

75

76STATISTIC(NumClustered, "Number of load/store pairs clustered");

77

78namespace llvm {

79

81 "misched-prera-direction", cl::Hidden,

82 cl::desc("Pre reg-alloc list scheduling direction"),

86 "Force top-down pre reg-alloc list scheduling"),

88 "Force bottom-up pre reg-alloc list scheduling"),

90 "Force bidirectional pre reg-alloc list scheduling")));

91

93 "misched-postra-direction", cl::Hidden,

94 cl::desc("Post reg-alloc list scheduling direction"),

98 "Force top-down post reg-alloc list scheduling"),

100 "Force bottom-up post reg-alloc list scheduling"),

102 "Force bidirectional post reg-alloc list scheduling")));

103

106 cl::desc("Print critical path length to stdout"));

107

110 cl::desc("Verify machine instrs before and after machine scheduling"));

111

112#ifndef NDEBUG

115 cl::desc("Pop up a window to show MISched dags after they are processed"));

117 cl::desc("Print schedule DAGs"));

120 cl::desc("Dump resource usage at schedule boundary."));

123 cl::desc("Show details of invoking getNextResoufceCycle."));

124#else

128#ifdef LLVM_ENABLE_DUMP

130#endif

131#endif

132

133}

134

135#ifndef NDEBUG

136

137

139 cl::desc("Hide nodes with more predecessor/successor than cutoff"));

140

142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));

143

145 cl::desc("Only schedule this function"));

147 cl::desc("Only schedule this MBB#"));

148#endif

149

150

151

153 cl::desc("Limit ready list to N instructions"), cl::init(256));

154

156 cl::desc("Enable register pressure scheduling."), cl::init(true));

157

159 cl::desc("Enable cyclic critical path analysis."), cl::init(true));

160

162 cl::desc("Enable memop clustering."),

166 cl::desc("Switch to fast cluster algorithm with the lost "

167 "of some fusion opportunities"),

171 cl::desc("The threshold for fast cluster"),

173

174#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

177 cl::desc("Dump resource usage at schedule boundary."));

180 cl::desc("Set width of the columns with "

181 "the resources and schedule units"),

185 cl::desc("Set width of the columns showing resource booking."),

189 cl::desc("Sort the resources printed in the dump trace"));

190#endif

191

195

196

198

199

200void MachineSchedStrategy::anchor() {}

201

202void ScheduleDAGMutation::anchor() {}

203

204

205

206

207

210}

211

214}

215

216namespace {

217

218

221public:

223

225

226protected:

228};

229

230

231class MachineScheduler : public MachineSchedulerBase {

232public:

233 MachineScheduler();

234

235 void getAnalysisUsage(AnalysisUsage &AU) const override;

236

238

239 static char ID;

240

241protected:

243};

244

245

246class PostMachineScheduler : public MachineSchedulerBase {

247public:

248 PostMachineScheduler();

249

250 void getAnalysisUsage(AnalysisUsage &AU) const override;

251

253

254 static char ID;

255

256protected:

258};

259

260}

261

262char MachineScheduler::ID = 0;

263

265

267 "Machine Instruction Scheduler", false, false)

275

276MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {

278}

279

280void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {

291}

292

293char PostMachineScheduler::ID = 0;

294

296

298 "PostRA Machine Instruction Scheduler", false, false)

304

305PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {

307}

308

309void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {

316}

317

320

321

322

324 return nullptr;

325}

326

327

332 cl::desc("Machine instruction scheduler to use"));

333

337

339 "enable-misched",

340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),

342

344 "enable-post-misched",

345 cl::desc("Enable the post-ra machine instruction scheduling pass."),

347

348

352 assert(I != Beg && "reached the top of the region, cannot decrement");

353 while (--I != Beg) {

354 if (I->isDebugOrPseudoInstr())

355 break;

356 }

357 return I;

358}

359

360

366}

367

368

369

373 for(; I != End; ++I) {

374 if (I->isDebugOrPseudoInstr())

375 break;

376 }

377 return I;

378}

379

380

386}

387

388

390

393 return Ctor(this);

394

395

399

400

402}

403

404

405

406

407ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {

408

412

413

415}

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {

435 return false;

436

439 return false;

441 return false;

442

444

445

446 MF = &mf;

447 MLI = &getAnalysis().getLI();

448 MDT = &getAnalysis().getDomTree();

449 PassConfig = &getAnalysis();

450 AA = &getAnalysis().getAAResults();

451

452 LIS = &getAnalysis().getLIS();

453

456 MF->verify(this, "Before machine scheduling.", &errs());

457 }

458 RegClassInfo->runOnMachineFunction(*MF);

459

460

461

462 std::unique_ptr Scheduler(createMachineScheduler());

463 scheduleRegions(*Scheduler, false);

464

467 MF->verify(this, "After machine scheduling.", &errs());

468 return true;

469}

470

471bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {

473 return false;

474

477 return false;

479 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");

480 return false;

481 }

483

484

485 MF = &mf;

486 MLI = &getAnalysis().getLI();

487 PassConfig = &getAnalysis();

488 AA = &getAnalysis().getAAResults();

489

491 MF->verify(this, "Before post machine scheduling.", &errs());

492

493

494

495 std::unique_ptr Scheduler(createPostMachineScheduler());

496 scheduleRegions(*Scheduler, true);

497

499 MF->verify(this, "After post machine scheduling.", &errs());

500 return true;

501}

502

503

504

505

506

507

508

509

510

511

512

518 MI->isFakeUse();

519}

520

521

522namespace {

523struct SchedRegion {

524

525

526

527

528

531 unsigned NumRegionInstrs;

532

534 unsigned N) :

535 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}

536};

537}

538

540

541static void

544 bool RegionsTopDown) {

547

550 RegionEnd != MBB->begin(); RegionEnd = I) {

551

552

553 if (RegionEnd != MBB->end() ||

555 --RegionEnd;

556 }

557

558

559

560 unsigned NumRegionInstrs = 0;

561 I = RegionEnd;

565 break;

566 if (MI.isDebugOrPseudoInstr()) {

567

568

569 ++NumRegionInstrs;

570 }

571 }

572

573

574

575 if (NumRegionInstrs != 0)

576 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));

577 }

578

579 if (RegionsTopDown)

580 std::reverse(Regions.begin(), Regions.end());

581}

582

583

585 bool FixKillFlags) {

586

587

588

589

591 MBB != MBBEnd; ++MBB) {

592

594

595#ifndef NDEBUG

597 continue;

600 continue;

601#endif

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

619 for (const SchedRegion &R : MBBRegions) {

622 unsigned NumRegionInstrs = R.NumRegionInstrs;

623

624

625

626 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);

627

628

629 if (I == RegionEnd || I == std::prev(RegionEnd)) {

630

631

633 continue;

634 }

635 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");

637 << " " << MBB->getName() << "\n From: " << *I

638 << " To: ";

639 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;

640 else dbgs() << "End\n";

641 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');

643 errs() << MF->getName();

646 }

647

648

649

651

652

654 }

656

657

658

659 if (FixKillFlags)

661 }

663}

664

665void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {

666

667}

668

669#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

671 dbgs() << "Queue " << Name << ": ";

672 for (const SUnit *SU : Queue)

673 dbgs() << SU->NodeNum << " ";

674 dbgs() << "\n";

675}

676#endif

677

678

679

680

681

682

683

684

686

687

688

689

690

693

694 if (SuccEdge->isWeak()) {

698 return;

699 }

700#ifndef NDEBUG

702 dbgs() << "*** Scheduling failed! ***\n";

704 dbgs() << " has been released too many times!\n";

706 }

707#endif

708

709

712

715 SchedImpl->releaseTopNode(SuccSU);

716}

717

718

722}

723

724

725

726

727

730

731 if (PredEdge->isWeak()) {

735 return;

736 }

737#ifndef NDEBUG

739 dbgs() << "*** Scheduling failed! ***\n";

741 dbgs() << " has been released too many times!\n";

743 }

744#endif

745

746

749

752 SchedImpl->releaseBottomNode(PredSU);

753}

754

755

759}

760

764}

765

769}

770

771

772

773

774

778 unsigned regioninstrs)

779{

781

783

784

786 if (SchedImpl->getPolicy().OnlyTopDown)

788 else if (SchedImpl->getPolicy().OnlyBottomUp)

790 else

793}

794

795

796

799

802

803

805

806

809

810

813}

814

816#if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)

819 return false;

820 }

821 ++NumInstrsScheduled;

822#endif

823 return true;

824}

825

826

827

828

829

831 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");

833

834

836

838

841

845

846

847

849

850

852

853 bool IsTopNode = false;

854 while (true) {

855 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");

857 if (!SU) break;

858

861 break;

862

864 if (IsTopNode) {

865 assert(SU->isTopReady() && "node still has unscheduled dependencies");

868 else

870 } else {

871 assert(SU->isBottomReady() && "node still has unscheduled dependencies");

874 if (&*priorII == MI)

876 else {

881 }

882 }

883

884

885

886

887 SchedImpl->schedNode(SU, IsTopNode);

888

890 }

892

894

896 dbgs() << "*** Final schedule for "

899 dbgs() << '\n';

900 });

901}

902

903

906 m->apply(this);

907}

908

913 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");

914

915

916 SU.biasCriticalPath();

917

918

919 if (!SU.NumPredsLeft)

921

922 if (!SU.NumSuccsLeft)

924 }

926}

927

928

933

934

935

936

937

938 for (SUnit *SU : TopRoots)

940

941

942

944 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {

946 }

947

950

952

953

956}

957

958

960

961 if (IsTopNode)

963 else

965

967}

968

969

971

975 }

976

977 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator

979 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);

987 }

988}

989

990#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

992

994

996 return;

997

998

1000 return;

1001

1002 dbgs() << " * Schedule table (TopDown):\n";

1008 if (!SU)

1009 continue;

1013 PI != PE; ++PI) {

1014 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle)

1015 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1;

1016 }

1017 }

1018

1020 for (unsigned C = FirstCycle; C <= LastCycle; ++C)

1022 dbgs() << "|\n";

1023

1026 if (!SU) {

1027 dbgs() << "Missing SUnit\n";

1028 continue;

1029 }

1030 std::string NodeName("SU(");

1031 NodeName += std::to_string(SU->NodeNum) + ")";

1033 unsigned C = FirstCycle;

1034 for (; C <= LastCycle; ++C) {

1037 else

1039 }

1040 dbgs() << "|\n";

1042

1046

1051 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||

1052 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&

1053 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);

1054 });

1056 C = FirstCycle;

1057 const std::string ResName =

1060 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) {

1062 }

1063 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;

1064 ++I, ++C)

1066 while (C++ <= LastCycle)

1068

1069 dbgs() << "| \n";

1070 }

1071 }

1072}

1073

1075

1077 return;

1078

1079

1081 return;

1082

1083 dbgs() << " * Schedule table (BottomUp):\n";

1085

1090 if (!SU)

1091 continue;

1095 PI != PE; ++PI) {

1096 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)

1097 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1;

1098 }

1099 }

1100

1102 for (int C = FirstCycle; C >= LastCycle; --C)

1104 dbgs() << "|\n";

1105

1108 if (!SU) {

1109 dbgs() << "Missing SUnit\n";

1110 continue;

1111 }

1112 std::string NodeName("SU(");

1113 NodeName += std::to_string(SU->NodeNum) + ")";

1115 int C = FirstCycle;

1116 for (; C >= LastCycle; --C) {

1119 else

1121 }

1122 dbgs() << "|\n";

1127

1132 return LHS.AcquireAtCycle < RHS.AcquireAtCycle ||

1133 (LHS.AcquireAtCycle == RHS.AcquireAtCycle &&

1134 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle);

1135 });

1137 C = FirstCycle;

1138 const std::string ResName =

1141 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) {

1143 }

1144 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E;

1145 ++I, --C)

1147 while (C-- >= LastCycle)

1149

1150 dbgs() << "| \n";

1151 }

1152 }

1153}

1154#endif

1155

1156#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

1164 dbgs() << "* Schedule table (Bidirectional): not implemented\n";

1165 } else {

1166 dbgs() << "* Schedule table: DumpDirection not set.\n";

1167 }

1168 }

1169

1173 else

1174 dbgs() << "Missing SUnit\n";

1175 }

1176}

1177#endif

1178

1179

1180

1181

1182

1183

1186}

1187

1191 if (!MO.isReg())

1192 continue;

1193 if (!MO.readsReg())

1194 continue;

1196 continue;

1197

1199 if (!Reg.isVirtual())

1200 continue;

1201

1202

1204 bool FoundDef = false;

1206 if (MO2.getReg() == Reg && !MO2.isDead()) {

1207 FoundDef = true;

1208 break;

1209 }

1210 }

1211 if (FoundDef)

1212 continue;

1213 }

1214

1215

1218 if (UI->SU == &SU)

1219 break;

1220 }

1223 }

1224}

1225

1226

1227

1228

1229

1233 unsigned regioninstrs)

1234{

1235

1237

1238

1240

1242

1245

1247 "ShouldTrackLaneMasks requires ShouldTrackPressure");

1248}

1249

1250

1251

1257

1262

1263

1265

1267

1268

1271

1272

1273

1274

1277

1283 };

1284

1285

1286

1288

1289

1294 }

1295

1298 dbgs() << "Bottom Pressure:\n";

1300

1304 "Can't find the region bottom");

1305

1306

1307

1311 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {

1317 }

1318 }

1323 dbgs() << "\n");

1324}

1325

1328 const std::vector &NewMaxPressure) {

1332 if (!PC.isValid())

1333 break;

1334 unsigned ID = PC.getPSet();

1336 ++CritIdx;

1339 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())

1341 }

1343 if (NewMaxPressure[ID] >= Limit - 2) {

1345 << NewMaxPressure[ID]

1346 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")

1348 << " livethru)\n");

1349 }

1350 }

1351}

1352

1353

1354

1359

1360 if (!Reg.isVirtual())

1361 continue;

1362

1364

1365

1366

1367

1368 bool Decrement = P.LaneMask.any();

1369

1372 SUnit &SU = *V2SU.SU;

1374 continue;

1375

1382 }

1383 } else {

1384 assert(P.LaneMask.any());

1386

1387

1388

1389

1396 else {

1399 }

1400

1401 assert(VNI && "No live value at use.");

1404 SUnit *SU = V2SU.SU;

1405

1406

1410 if (LRQ.valueIn() == VNI) {

1416 }

1417 }

1418 }

1419 }

1420 }

1421}

1422

1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

1430 dbgs() << " Pressure Diff : ";

1432 }

1433 dbgs() << " Single Issue : ";

1436 dbgs() << "true;";

1437 else

1438 dbgs() << "false;";

1439 dbgs() << '\n';

1440 }

1443#endif

1444}

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1457 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");

1460

1462

1465

1466

1467

1469

1473

1474

1476

1477 bool IsTopNode = false;

1478 while (true) {

1479 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");

1481 if (!SU) break;

1482

1485 break;

1486

1488

1494 SchedImpl->scheduleTree(SubtreeID);

1495 }

1496 }

1497

1498

1499 SchedImpl->schedNode(SU, IsTopNode);

1500

1502 }

1504

1506

1508 dbgs() << "*** Final schedule for "

1511 dbgs() << '\n';

1512 });

1513}

1514

1515

1521 return;

1522 }

1523

1524

1527

1528

1531

1532

1534

1535

1537}

1538

1547}

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1576

1578 return 0;

1579

1580 unsigned MaxCyclicLatency = 0;

1581

1584 if (!Reg.isVirtual())

1585 continue;

1588 if (!DefVNI)

1589 continue;

1590

1593 if (!DefSU)

1594 continue;

1595

1596 unsigned LiveOutHeight = DefSU->getHeight();

1597 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;

1598

1601 SUnit *SU = V2SU.SU;

1603 continue;

1604

1605

1608 continue;

1609

1610

1611

1612

1613 unsigned CyclicLatency = 0;

1614 if (LiveOutDepth > SU->getDepth())

1615 CyclicLatency = LiveOutDepth - SU->getDepth();

1616

1618 if (LiveInHeight > LiveOutHeight) {

1619 if (LiveInHeight - LiveOutHeight < CyclicLatency)

1620 CyclicLatency = LiveInHeight - LiveOutHeight;

1621 } else

1622 CyclicLatency = 0;

1623

1625 << SU->NodeNum << ") = " << CyclicLatency << "c\n");

1626 if (CyclicLatency > MaxCyclicLatency)

1627 MaxCyclicLatency = CyclicLatency;

1628 }

1629 }

1630 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");

1631 return MaxCyclicLatency;

1632}

1633

1634

1635

1642 }

1643}

1644

1645

1647

1649

1650 if (IsTopNode) {

1651 assert(SU->isTopReady() && "node still has unscheduled dependencies");

1654 else {

1657 }

1658

1660

1663 false);

1665

1668 } else {

1669

1671 }

1672

1677

1679 }

1680 } else {

1681 assert(SU->isBottomReady() && "node still has unscheduled dependencies");

1684 if (&*priorII == MI)

1686 else {

1690 }

1694 }

1698 false);

1700

1703 } else {

1704

1706 }

1707

1715

1718 }

1719 }

1720}

1721

1722

1723

1724

1725

1726namespace {

1727

1728

1729

1731 struct MemOpInfo {

1736 bool OffsetIsScalable;

1737

1740 : SU(SU), BaseOps(BaseOps), Offset(Offset), Width(Width),

1741 OffsetIsScalable(OffsetIsScalable) {}

1742

1745 if (A->getType() != B->getType())

1746 return A->getType() < B->getType();

1747 if (A->isReg())

1748 return A->getReg() < B->getReg();

1749 if (A->isFI()) {

1750 const MachineFunction &MF = *A->getParent()->getParent()->getParent();

1754 return StackGrowsDown ? A->getIndex() > B->getIndex()

1755 : A->getIndex() < B->getIndex();

1756 }

1757

1758 llvm_unreachable("MemOpClusterMutation only supports register or frame "

1759 "index bases.");

1760 }

1761

1762 bool operator<(const MemOpInfo &RHS) const {

1763

1764

1765 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),

1766 RHS.BaseOps.begin(), RHS.BaseOps.end(),

1767 Compare))

1768 return true;

1769 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),

1770 BaseOps.begin(), BaseOps.end(), Compare))

1771 return false;

1774 return SU->NodeNum < RHS.SU->NodeNum;

1775 }

1776 };

1777

1780 bool IsLoad;

1781 bool ReorderWhileClustering;

1782

1783public:

1786 bool ReorderWhileClustering)

1787 : TII(tii), TRI(tri), IsLoad(IsLoad),

1788 ReorderWhileClustering(ReorderWhileClustering) {}

1789

1791

1792protected:

1793 void clusterNeighboringMemOps(ArrayRef MemOps, bool FastCluster,

1795 void collectMemOpRecords(std::vector &SUnits,

1799};

1800

1801class StoreClusterMutation : public BaseMemOpClusterMutation {

1802public:

1805 bool ReorderWhileClustering)

1806 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {}

1807};

1808

1809class LoadClusterMutation : public BaseMemOpClusterMutation {

1810public:

1812 bool ReorderWhileClustering)

1813 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {}

1814};

1815

1816}

1817

1818namespace llvm {

1819

1820std::unique_ptr

1823 bool ReorderWhileClustering) {

1825 TII, TRI, ReorderWhileClustering)

1826 : nullptr;

1827}

1828

1829std::unique_ptr

1832 bool ReorderWhileClustering) {

1834 TII, TRI, ReorderWhileClustering)

1835 : nullptr;

1836}

1837

1838}

1839

1840

1841

1842

1843

1844

1845void BaseMemOpClusterMutation::clusterNeighboringMemOps(

1848

1850

1851

1852

1853 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {

1854

1855 auto MemOpa = MemOpRecords[Idx];

1856

1857

1858 unsigned NextIdx = Idx + 1;

1859 for (; NextIdx < End; ++NextIdx)

1860

1861

1862 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&

1863 (FastCluster ||

1864 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&

1865 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))

1866 break;

1867 if (NextIdx == End)

1868 continue;

1869

1870 auto MemOpb = MemOpRecords[NextIdx];

1871 unsigned ClusterLength = 2;

1872 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() +

1873 MemOpb.Width.getValue().getKnownMinValue();

1874 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {

1875 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;

1876 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second +

1877 MemOpb.Width.getValue().getKnownMinValue();

1878 }

1879

1880 if (TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,

1881 MemOpa.OffsetIsScalable, MemOpb.BaseOps,

1882 MemOpb.Offset, MemOpb.OffsetIsScalable,

1883 ClusterLength, CurrentClusterBytes))

1884 continue;

1885

1886 SUnit *SUa = MemOpa.SU;

1887 SUnit *SUb = MemOpb.SU;

1888 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum)

1890

1891

1893 continue;

1894

1896 << SUb->NodeNum << ")\n");

1897 ++NumClustered;

1898

1899 if (IsLoad) {

1900

1901

1902

1903

1904 for (const SDep &Succ : SUa->Succs) {

1906 continue;

1908 << ")\n");

1910 }

1911 } else {

1912

1913

1914

1915

1916

1917

1918 for (const SDep &Pred : SUb->Preds) {

1920 continue;

1922 << ")\n");

1924 }

1925 }

1926

1927 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,

1928 CurrentClusterBytes};

1929

1930 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength

1931 << ", Curr cluster bytes: " << CurrentClusterBytes

1932 << "\n");

1933 }

1934}

1935

1936void BaseMemOpClusterMutation::collectMemOpRecords(

1938 for (auto &SU : SUnits) {

1941 continue;

1942

1946 bool OffsetIsScalable;

1949 OffsetIsScalable, Width, TRI)) {

1951 continue;

1952

1954 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width));

1955

1956 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "

1957 << Offset << ", OffsetIsScalable: " << OffsetIsScalable

1958 << ", Width: " << Width << "\n");

1959 }

1960#ifndef NDEBUG

1961 for (const auto *Op : BaseOps)

1963#endif

1964 }

1965}

1966

1967bool BaseMemOpClusterMutation::groupMemOps(

1970 bool FastCluster =

1973

1974 for (const auto &MemOp : MemOps) {

1975 unsigned ChainPredID = DAG->SUnits.size();

1976 if (FastCluster) {

1977 for (const SDep &Pred : MemOp.SU->Preds) {

1978

1979

1980

1981 if ((Pred.isCtrl() &&

1982 (IsLoad ||

1986 break;

1987 }

1988 }

1989 } else

1990 ChainPredID = 0;

1991

1993 }

1994 return FastCluster;

1995}

1996

1997

1999

2001 collectMemOpRecords(DAG->SUnits, MemOpRecords);

2002

2003 if (MemOpRecords.size() < 2)

2004 return;

2005

2006

2007

2008

2010 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);

2011

2012 for (auto &Group : Groups) {

2013

2014

2016

2017

2018 clusterNeighboringMemOps(Group.second, FastCluster, DAG);

2019 }

2020}

2021

2022

2023

2024

2025

2026namespace {

2027

2028

2029

2030

2032

2034

2035

2036

2038

2039public:

2041

2043

2044protected:

2046};

2047

2048}

2049

2050namespace llvm {

2051

2052std::unique_ptr

2055 return std::make_unique(TII, TRI);

2056}

2057

2058}

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2082

2083

2087 return;

2088

2092 return;

2093

2094

2095

2096

2097

2098

2099

2100 unsigned LocalReg = SrcReg;

2101 unsigned GlobalReg = DstReg;

2103 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {

2104 LocalReg = DstReg;

2105 GlobalReg = SrcReg;

2107 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))

2108 return;

2109 }

2111

2112

2114

2115

2116

2117

2118 if (GlobalSegment == GlobalLI->end())

2119 return;

2120

2121

2122

2123

2124

2125 if (GlobalSegment->contains(LocalLI->beginIndex()))

2126 ++GlobalSegment;

2127

2128 if (GlobalSegment == GlobalLI->end())

2129 return;

2130

2131

2132 if (GlobalSegment != GlobalLI->begin()) {

2133

2135 GlobalSegment->start)) {

2136 return;

2137 }

2138

2139

2142 return;

2143 }

2144

2145

2146 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&

2147 "Disconnected LRG within the scheduling region.");

2148 }

2150 if (!GlobalDef)

2151 return;

2152

2154 if (!GlobalSU)

2155 return;

2156

2157

2158

2162 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);

2163 for (const SDep &Succ : LastLocalSU->Succs) {

2165 continue;

2166 if (Succ.getSUnit() == GlobalSU)

2167 continue;

2169 return;

2171 }

2172

2173

2177 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);

2178 for (const SDep &Pred : GlobalSU->Preds) {

2180 continue;

2181 if (Pred.getSUnit() == FirstLocalSU)

2182 continue;

2184 return;

2186 }

2188

2189 for (SUnit *LU : LocalUses) {

2190 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("

2191 << GlobalSU->NodeNum << ")\n");

2193 }

2194 for (SUnit *GU : GlobalUses) {

2195 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("

2196 << FirstLocalSU->NodeNum << ")\n");

2198 }

2199}

2200

2201

2202

2206

2208 if (FirstPos == DAG->end())

2209 return;

2213

2216 continue;

2217

2219 }

2220}

2221

2222

2223

2224

2225

2226

2228

2230

2231

2232

2233

2234

2236 unsigned Latency, bool AfterSchedNode) {

2237 int ResCntFactor = (int)(Count - (Latency * LFactor));

2238 if (AfterSchedNode)

2239 return ResCntFactor >= (int)LFactor;

2240 else

2241 return ResCntFactor > (int)LFactor;

2242}

2243

2245

2246

2247

2251 }

2254 CheckPending = false;

2255 CurrCycle = 0;

2256 CurrMOps = 0;

2257 MinReadyCycle = std::numeric_limits::max();

2258 ExpectedLatency = 0;

2259 DependentLatency = 0;

2260 RetiredMOps = 0;

2261 MaxExecutedResCount = 0;

2262 ZoneCritResIdx = 0;

2263 IsResourceLimited = false;

2264 ReservedCycles.clear();

2265 ReservedResourceSegments.clear();

2266 ReservedCyclesIndex.clear();

2267 ResourceGroupSubUnitMasks.clear();

2268#if LLVM_ENABLE_ABI_BREAKING_CHECKS

2269

2270

2271

2272 MaxObservedStall = 0;

2273#endif

2274

2275 ExecutedResCounts.resize(1);

2276 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");

2277}

2278

2283 return;

2292 unsigned PIdx = PI->ProcResourceIdx;

2294 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);

2296 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));

2297 }

2298 }

2299}

2300

2304 DAG = dag;

2309 ReservedCyclesIndex.resize(ResourceCount);

2310 ExecutedResCounts.resize(ResourceCount);

2311 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));

2312 unsigned NumUnits = 0;

2313

2314 for (unsigned i = 0; i < ResourceCount; ++i) {

2315 ReservedCyclesIndex[i] = NumUnits;

2320 U != UE; ++U)

2321 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);

2322 }

2323 }

2324

2325 ReservedCycles.resize(NumUnits, InvalidCycle);

2326 }

2327}

2328

2329

2330

2331

2332

2333

2334

2335

2338 return 0;

2339

2341 if (ReadyCycle > CurrCycle)

2342 return ReadyCycle - CurrCycle;

2343 return 0;

2344}

2345

2346

2347

2349 unsigned ReleaseAtCycle,

2350 unsigned AcquireAtCycle) {

2353 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(

2354 CurrCycle, AcquireAtCycle, ReleaseAtCycle);

2355

2356 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(

2357 CurrCycle, AcquireAtCycle, ReleaseAtCycle);

2358 }

2359

2360 unsigned NextUnreserved = ReservedCycles[InstanceIdx];

2361

2363 return CurrCycle;

2364

2366 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);

2367 return NextUnreserved;

2368}

2369

2370

2371

2372

2373std::pair<unsigned, unsigned>

2375 unsigned ReleaseAtCycle,

2376 unsigned AcquireAtCycle) {

2378 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n");

2380 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n");

2381 }

2383 unsigned InstanceIdx = 0;

2384 unsigned StartIndex = ReservedCyclesIndex[PIdx];

2386 assert(NumberOfInstances > 0 &&

2387 "Cannot have zero instances of a ProcResource");

2388

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2404 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])

2406 StartIndex, ReleaseAtCycle, AcquireAtCycle),

2407 StartIndex);

2408

2410 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {

2411 unsigned NextUnreserved, NextInstanceIdx;

2412 std::tie(NextUnreserved, NextInstanceIdx) =

2414 if (MinNextUnreserved > NextUnreserved) {

2415 InstanceIdx = NextInstanceIdx;

2416 MinNextUnreserved = NextUnreserved;

2417 }

2418 }

2419 return std::make_pair(MinNextUnreserved, InstanceIdx);

2420 }

2421

2422 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;

2423 ++I) {

2424 unsigned NextUnreserved =

2427 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @"

2428 << NextUnreserved << "c\n");

2429 if (MinNextUnreserved > NextUnreserved) {

2430 InstanceIdx = I;

2431 MinNextUnreserved = NextUnreserved;

2432 }

2433 }

2436 << "[" << InstanceIdx - StartIndex << "]"

2437 << " available @" << MinNextUnreserved << "c"

2438 << "\n");

2439 return std::make_pair(MinNextUnreserved, InstanceIdx);

2440}

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2458 return true;

2459 }

2460

2465 return true;

2466 }

2467

2468 if (CurrMOps > 0 &&

2472 << (isTop() ? "begin" : "end") << " group\n");

2473 return true;

2474 }

2475

2481 unsigned ResIdx = PE.ProcResourceIdx;

2482 unsigned ReleaseAtCycle = PE.ReleaseAtCycle;

2483 unsigned AcquireAtCycle = PE.AcquireAtCycle;

2484 unsigned NRCycle, InstanceIdx;

2485 std::tie(NRCycle, InstanceIdx) =

2487 if (NRCycle > CurrCycle) {

2488#if LLVM_ENABLE_ABI_BREAKING_CHECKS

2489 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);

2490#endif

2493 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'

2494 << "=" << NRCycle << "c\n");

2495 return true;

2496 }

2497 }

2498 }

2499 return false;

2500}

2501

2502

2505 SUnit *LateSU = nullptr;

2506 unsigned RemLatency = 0;

2507 for (SUnit *SU : ReadySUs) {

2509 if (L > RemLatency) {

2510 RemLatency = L;

2511 LateSU = SU;

2512 }

2513 }

2514 if (LateSU) {

2516 << LateSU->NodeNum << ") " << RemLatency << "c\n");

2517 }

2518 return RemLatency;

2519}

2520

2521

2522

2523

2526 OtherCritIdx = 0;

2528 return 0;

2529

2535 PIdx != PEnd; ++PIdx) {

2537 if (OtherCount > OtherCritCount) {

2538 OtherCritCount = OtherCount;

2539 OtherCritIdx = PIdx;

2540 }

2541 }

2542 if (OtherCritIdx) {

2547 }

2548 return OtherCritCount;

2549}

2550

2552 unsigned Idx) {

2553 assert(SU->getInstr() && "Scheduled SUnit must have instr");

2554

2555#if LLVM_ENABLE_ABI_BREAKING_CHECKS

2556

2557

2558

2559 if (ReadyCycle > CurrCycle)

2560 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);

2561#endif

2562

2563 if (ReadyCycle < MinReadyCycle)

2564 MinReadyCycle = ReadyCycle;

2565

2566

2567

2569 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||

2571

2572 if (!HazardDetected) {

2574

2575 if (InPQueue)

2577 return;

2578 }

2579

2580 if (!InPQueue)

2582}

2583

2584

2587 assert(MinReadyCycle < std::numeric_limits::max() &&

2588 "MinReadyCycle uninitialized");

2589 if (MinReadyCycle > NextCycle)

2590 NextCycle = MinReadyCycle;

2591 }

2592

2594 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;

2595

2596

2597 if ((NextCycle - CurrCycle) > DependentLatency)

2598 DependentLatency = 0;

2599 else

2600 DependentLatency -= (NextCycle - CurrCycle);

2601

2603

2604 CurrCycle = NextCycle;

2605 } else {

2606

2607 for (; CurrCycle != NextCycle; ++CurrCycle) {

2610 else

2612 }

2613 }

2614 CheckPending = true;

2615 IsResourceLimited =

2618

2620 << '\n');

2621}

2622

2624 ExecutedResCounts[PIdx] += Count;

2625 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)

2626 MaxExecutedResCount = ExecutedResCounts[PIdx];

2627}

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2640 unsigned ReleaseAtCycle,

2641 unsigned NextCycle,

2642 unsigned AcquireAtCycle) {

2644 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);

2646 << ReleaseAtCycle << "x" << Factor << "u\n");

2647

2648

2652

2653

2654

2656 ZoneCritResIdx = PIdx;

2660 << "c\n");

2661 }

2662

2663 unsigned NextAvailable, InstanceIdx;

2664 std::tie(NextAvailable, InstanceIdx) =

2666 if (NextAvailable > CurrCycle) {

2669 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'

2670 << " reserved until @" << NextAvailable << "\n");

2671 }

2672 return NextAvailable;

2673}

2674

2675

2677

2680

2681

2683 }

2685

2686 CheckPending = true;

2687 }

2688

2689

2694 "Cannot schedule this instruction's MicroOps in the current cycle.");

2695

2697 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");

2698

2699 unsigned NextCycle = CurrCycle;

2701 case 0:

2702 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");

2703 break;

2704 case 1:

2705 if (ReadyCycle > NextCycle) {

2706 NextCycle = ReadyCycle;

2707 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");

2708 }

2709 break;

2710 default:

2711

2712

2713

2714

2715 if (SU->isUnbuffered && ReadyCycle > NextCycle)

2716 NextCycle = ReadyCycle;

2717 break;

2718 }

2719 RetiredMOps += IncMOps;

2720

2721

2726 if (ZoneCritResIdx) {

2727

2728 unsigned ScaledMOps =

2730

2731

2732

2735 ZoneCritResIdx = 0;

2736 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "

2738 << "c\n");

2739 }

2740 }

2744 unsigned RCycle =

2745 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,

2746 PI->AcquireAtCycle);

2747 if (RCycle > NextCycle)

2748 NextCycle = RCycle;

2749 }

2751

2752

2753

2754

2758 unsigned PIdx = PI->ProcResourceIdx;

2760

2762 unsigned ReservedUntil, InstanceIdx;

2764 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);

2766 ReservedResourceSegments[InstanceIdx].add(

2768 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),

2770 } else {

2771 ReservedResourceSegments[InstanceIdx].add(

2773 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),

2775 }

2776 } else {

2777

2778 unsigned ReservedUntil, InstanceIdx;

2780 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);

2782 ReservedCycles[InstanceIdx] =

2783 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);

2784 } else

2785 ReservedCycles[InstanceIdx] = NextCycle;

2786 }

2787 }

2788 }

2789 }

2790 }

2791

2792 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;

2793 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;

2794 if (SU->getDepth() > TopLatency) {

2795 TopLatency = SU->getDepth();

2797 << SU->NodeNum << ") " << TopLatency << "c\n");

2798 }

2799 if (SU->getHeight() > BotLatency) {

2802 << SU->NodeNum << ") " << BotLatency << "c\n");

2803 }

2804

2805 if (NextCycle > CurrCycle)

2807 else

2808

2809

2810 IsResourceLimited =

2813

2814

2815

2816

2817

2818 CurrMOps += IncMOps;

2819

2820

2821

2822

2823

2827 << " group\n");

2829 }

2830

2832 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "

2833 << CurrCycle << '\n');

2835 }

2837}

2838

2839

2840

2842

2844 MinReadyCycle = std::numeric_limits::max();

2845

2846

2847

2848 for (unsigned I = 0, E = Pending.size(); I < E; ++I) {

2851

2852 if (ReadyCycle < MinReadyCycle)

2853 MinReadyCycle = ReadyCycle;

2854

2856 break;

2857

2860 --I;

2861 --E;

2862 }

2863 }

2864 CheckPending = false;

2865}

2866

2867

2871 else {

2874 }

2875}

2876

2877

2878

2879

2881 if (CheckPending)

2883

2884

2889 continue;

2890 }

2891 ++I;

2892 }

2894

2895

2896

2897 (void)i;

2900 }

2901

2904

2907 return nullptr;

2908}

2909

2910#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

2911

2912

2913

2914

2917 return;

2918

2920 unsigned StartIdx = 0;

2921

2922 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {

2925 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {

2926 dbgs() << ResName << "(" << UnitIdx << ") = ";

2928 if (ReservedResourceSegments.count(StartIdx + UnitIdx))

2929 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);

2930 else

2931 dbgs() << "{ }\n";

2932 } else

2933 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n";

2934 }

2935 StartIdx += NumUnits;

2936 }

2937}

2938

2939

2940

2942 unsigned ResFactor;

2943 unsigned ResCount;

2944 if (ZoneCritResIdx) {

2947 } else {

2949 ResCount = RetiredMOps * ResFactor;

2950 }

2953 << " Retired: " << RetiredMOps;

2955 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "

2956 << ResCount / ResFactor << " "

2958 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"

2959 << (IsResourceLimited ? " - Resource" : " - Latency")

2960 << " limited.\n";

2963}

2964#endif

2965

2966

2967

2968

2969

2974 return;

2975

2984 }

2985}

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3005 RemLatency = std::max(RemLatency,

3007 RemLatency = std::max(RemLatency,

3009 return RemLatency;

3010}

3011

3012

3013

3014bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,

3016 bool ComputeRemLatency,

3017 unsigned &RemLatency) const {

3018

3019

3021 return true;

3022

3023

3025 return false;

3026

3027 if (ComputeRemLatency)

3029

3031}

3032

3033

3034

3038

3039

3040

3041

3042

3043 unsigned OtherCritIdx = 0;

3044 unsigned OtherCount =

3046

3047 bool OtherResLimited = false;

3048 unsigned RemLatency = 0;

3049 bool RemLatencyComputed = false;

3052 RemLatencyComputed = true;

3054 OtherCount, RemLatency, false);

3055 }

3056

3057

3058

3059

3060 if (!OtherResLimited &&

3061 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,

3062 RemLatency))) {

3065 << " RemainingLatency " << RemLatency << " + "

3066 << CurrZone.getCurrCycle() << "c > CritPath "

3068 }

3069

3071 return;

3072

3074 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "

3075 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";

3076 } if (OtherResLimited) dbgs()

3077 << " RemainingLimit: "

3080 << " Latency limited both directions.\n");

3081

3084

3085 if (OtherResLimited)

3087}

3088

3089#ifndef NDEBUG

3092 switch (Reason) {

3093 case NoCand: return "NOCAND ";

3094 case Only1: return "ONLY1 ";

3095 case PhysReg: return "PHYS-REG ";

3096 case RegExcess: return "REG-EXCESS";

3098 case Stall: return "STALL ";

3099 case Cluster: return "CLUSTER ";

3100 case Weak: return "WEAK ";

3101 case RegMax: return "REG-MAX ";

3109 case NodeOrder: return "ORDER ";

3110 };

3112}

3113

3116 unsigned ResIdx = 0;

3118 switch (Cand.Reason) {

3119 default:

3120 break;

3123 break;

3126 break;

3129 break;

3132 break;

3135 break;

3138 break;

3141 break;

3144 break;

3147 break;

3148 }

3150 if (P.isValid())

3152 << ":" << P.getUnitInc() << " ";

3153 else

3154 dbgs() << " ";

3155 if (ResIdx)

3157 else

3158 dbgs() << " ";

3161 else

3162 dbgs() << " ";

3163 dbgs() << '\n';

3164}

3165#endif

3166

3167namespace llvm {

3168

3169

3170

3175 if (TryVal < CandVal) {

3176 TryCand.Reason = Reason;

3177 return true;

3178 }

3179 if (TryVal > CandVal) {

3180 if (Cand.Reason > Reason)

3181 Cand.Reason = Reason;

3182 return true;

3183 }

3184 return false;

3185}

3186

3191 if (TryVal > CandVal) {

3192 TryCand.Reason = Reason;

3193 return true;

3194 }

3195 if (TryVal < CandVal) {

3196 if (Cand.Reason > Reason)

3197 Cand.Reason = Reason;

3198 return true;

3199 }

3200 return false;

3201}

3202

3206 if (Zone.isTop()) {

3207

3208

3209

3214 return true;

3215 }

3218 return true;

3219 } else {

3220

3221

3222

3227 return true;

3228 }

3231 return true;

3232 }

3233 return false;

3234}

3235}

3236

3238 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")

3240}

3241

3244}

3245

3248 "(PreRA)GenericScheduler needs vreg liveness");

3252

3254 DAG->computeDFSResult();

3255

3259

3260

3261

3262

3263

3265 if (!Top.HazardRec) {

3267 }

3268 if (!Bot.HazardRec) {

3270 }

3271 TopCand.SU = nullptr;

3272 BotCand.SU = nullptr;

3273}

3274

3275

3278 unsigned NumRegionInstrs) {

3281

3282

3283

3284

3285

3287 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) {

3293 break;

3294 }

3295 }

3296

3297

3298

3300

3301

3303

3304

3308 }

3309

3319 }

3320}

3321

3323

3324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)

3325 dbgs() << "GenericScheduler RegionPolicy: "

3329 << "\n";

3330#endif

3331}

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3344 return;

3345

3346

3347 unsigned IterCount =

3350

3352

3353 unsigned InFlightCount =

3354 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;

3355 unsigned BufferLimit =

3357

3359

3361 dbgs() << "IssueCycles="

3364 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount

3368}

3369

3372

3373

3374 for (const SUnit *SU : Bot.Available) {

3377 }

3381 }

3382

3385 checkAcyclicLatency();

3386 }

3387}

3388

3389namespace llvm {

3397

3398

3400 Reason)) {

3401 return true;

3402 }

3403

3404

3406 return false;

3407

3408

3409

3412 if (TryPSet == CandPSet) {

3414 Reason);

3415 }

3416

3417 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :

3418 std::numeric_limits::max();

3419

3420 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :

3421 std::numeric_limits::max();

3422

3423

3426 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);

3427}

3428

3431}

3432

3433

3434

3435

3436

3437

3438

3439

3442

3443 if (MI->isCopy()) {

3444 unsigned ScheduledOper = isTop ? 1 : 0;

3445 unsigned UnscheduledOper = isTop ? 0 : 1;

3446

3447

3448 if (MI->getOperand(ScheduledOper).getReg().isPhysical())

3449 return 1;

3450

3451

3453 if (MI->getOperand(UnscheduledOper).getReg().isPhysical())

3454 return AtBoundary ? -1 : 1;

3455 }

3456

3457 if (MI->isMoveImmediate()) {

3458

3459

3460

3461 bool DoBias = true;

3463 if (Op.isReg() && Op.getReg().isPhysical()) {

3464 DoBias = false;

3465 break;

3466 }

3467 }

3468

3469 if (DoBias)

3470 return isTop ? -1 : 1;

3471 }

3472

3473 return 0;

3474}

3475}

3476

3478 bool AtTop,

3481 Cand.SU = SU;

3482 Cand.AtTop = AtTop;

3483 if (DAG->isTrackingPressure()) {

3484 if (AtTop) {

3488 DAG->getRegionCriticalPSets(),

3489 DAG->getRegPressure().MaxSetPressure);

3490 } else {

3494 &DAG->getPressureDiff(Cand.SU),

3496 DAG->getRegionCriticalPSets(),

3497 DAG->getRegPressure().MaxSetPressure);

3498 } else {

3501 DAG->getPressureDiff(Cand.SU),

3503 DAG->getRegionCriticalPSets(),

3504 DAG->getRegPressure().MaxSetPressure);

3505 }

3506 }

3507 }

3509 << " Try SU(" << Cand.SU->NodeNum << ") "

3512}

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3528

3531 return true;

3532 }

3533

3534

3538

3539

3543 DAG->MF))

3545

3546

3550 DAG->MF))

3552

3553

3554

3555

3556

3557

3558 bool SameBoundary = Zone != nullptr;

3559 if (SameBoundary) {

3560

3561

3562

3566

3567

3571 }

3572

3573

3574

3575

3576

3577

3578

3579 const SUnit *CandNextClusterSU =

3581 const SUnit *TryCandNextClusterSU =

3583 if (tryGreater(TryCand.SU == TryCandNextClusterSU,

3584 Cand.SU == CandNextClusterSU,

3585 TryCand, Cand, Cluster))

3587

3588 if (SameBoundary) {

3589

3592 TryCand, Cand, Weak))

3594 }

3595

3596

3600 DAG->MF))

3602

3603 if (SameBoundary) {

3604

3613

3614

3615

3619

3620

3624 return true;

3625 }

3626 }

3627

3628 return false;

3629}

3630

3631

3632

3633

3634

3635

3640

3642

3644 for (SUnit *SU : Q) {

3645

3647 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);

3648

3650 if (tryCandidate(Cand, TryCand, ZoneArg)) {

3651

3656 }

3657 }

3658}

3659

3660

3662

3663

3664 if (SUnit *SU = Bot.pickOnlyChoice()) {

3665 IsTopNode = false;

3667 return SU;

3668 }

3669 if (SUnit *SU = Top.pickOnlyChoice()) {

3670 IsTopNode = true;

3672 return SU;

3673 }

3674

3675

3677 setPolicy(BotPolicy, false, Bot, &Top);

3678

3679

3681 setPolicy(TopPolicy, false, Top, &Bot);

3682

3683

3685 if (!BotCand.isValid() || BotCand.SU->isScheduled ||

3686 BotCand.Policy != BotPolicy) {

3688 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);

3689 assert(BotCand.Reason != NoCand && "failed to find the first candidate");

3690 } else {

3692#ifndef NDEBUG

3696 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);

3697 assert(TCand.SU == BotCand.SU &&

3698 "Last pick result should correspond to re-picking right now");

3699 }

3700#endif

3701 }

3702

3703

3705 if (!TopCand.isValid() || TopCand.SU->isScheduled ||

3706 TopCand.Policy != TopPolicy) {

3708 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);

3709 assert(TopCand.Reason != NoCand && "failed to find the first candidate");

3710 } else {

3712#ifndef NDEBUG

3716 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);

3717 assert(TCand.SU == TopCand.SU &&

3718 "Last pick result should correspond to re-picking right now");

3719 }

3720#endif

3721 }

3722

3723

3724 assert(BotCand.isValid());

3725 assert(TopCand.isValid());

3728 if (tryCandidate(Cand, TopCand, nullptr)) {

3731 }

3732

3733 IsTopNode = Cand.AtTop;

3735 return Cand.SU;

3736}

3737

3738

3740 if (DAG->top() == DAG->bottom()) {

3741 assert(Top.Available.empty() && Top.Pending.empty() &&

3742 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");

3743 return nullptr;

3744 }

3746 do {

3748 SU = Top.pickOnlyChoice();

3749 if (!SU) {

3751 TopCand.reset(NoPolicy);

3752 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);

3753 assert(TopCand.Reason != NoCand && "failed to find a candidate");

3755 SU = TopCand.SU;

3756 }

3757 IsTopNode = true;

3759 SU = Bot.pickOnlyChoice();

3760 if (!SU) {

3762 BotCand.reset(NoPolicy);

3763 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);

3764 assert(BotCand.Reason != NoCand && "failed to find a candidate");

3766 SU = BotCand.SU;

3767 }

3768 IsTopNode = false;

3769 } else {

3770 SU = pickNodeBidirectional(IsTopNode);

3771 }

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3790 Top.removeReady(SU);

3792 Bot.removeReady(SU);

3793

3796 return SU;

3797}

3798

3801 if (!isTop)

3802 ++InsertPos;

3804

3805

3806

3807 for (SDep &Dep : Deps) {

3810 continue;

3811 SUnit *DepSU = Dep.getSUnit();

3812 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)

3813 continue;

3815 if (!Copy->isCopy() && !Copy->isMoveImmediate())

3816 continue;

3818 DAG->dumpNode(*Dep.getSUnit()));

3820 }

3821}

3822

3823

3824

3825

3826

3827

3828

3829

3831 if (IsTopNode) {

3833 Top.bumpNode(SU);

3835 reschedulePhysReg(SU, true);

3836 } else {

3838 Bot.bumpNode(SU);

3840 reschedulePhysReg(SU, false);

3841 }

3842}

3843

3844

3845

3849

3850

3851

3852

3853

3855

3857

3859 if (!MacroFusions.empty())

3861 return DAG;

3862}

3863

3866}

3867

3871

3872

3873

3874

3875

3877 DAG = Dag;

3880

3884

3885

3886

3888 if (!Top.HazardRec) {

3890 }

3891 if (!Bot.HazardRec) {

3893 }

3894}

3895

3898 unsigned NumRegionInstrs) {

3900

3901

3902

3905

3906

3908

3909

3919 }

3920}

3921

3924

3925

3926 for (const SUnit *SU : Bot.Available) {

3929 }

3933 }

3934}

3935

3936

3937

3938

3939

3940

3943

3946 return true;

3947 }

3948

3949

3950 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),

3951 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))

3953

3954

3955 const SUnit *CandNextClusterSU =

3957 const SUnit *TryCandNextClusterSU =

3959 if (tryGreater(TryCand.SU == TryCandNextClusterSU,

3960 Cand.SU == CandNextClusterSU, TryCand, Cand, Cluster))

3962

3963

3971

3972

3973

3975

3979 }

3980

3981

3984 return true;

3985 }

3986

3987 return false;

3988}

3989

3993 for (SUnit *SU : Q) {

3995 TryCand.SU = SU;

3998 if (tryCandidate(Cand, TryCand)) {

4001 }

4002 }

4003}

4004

4005

4007

4008

4009

4010

4011

4012 if (SUnit *SU = Bot.pickOnlyChoice()) {

4013 IsTopNode = false;

4015 return SU;

4016 }

4017 if (SUnit *SU = Top.pickOnlyChoice()) {

4018 IsTopNode = true;

4020 return SU;

4021 }

4022

4023

4025 setPolicy(BotPolicy, true, Bot, &Top);

4026

4027

4029 setPolicy(TopPolicy, true, Top, &Bot);

4030

4031

4033 if (!BotCand.isValid() || BotCand.SU->isScheduled ||

4034 BotCand.Policy != BotPolicy) {

4036 pickNodeFromQueue(Bot, BotCand);

4037 assert(BotCand.Reason != NoCand && "failed to find the first candidate");

4038 } else {

4040#ifndef NDEBUG

4044 pickNodeFromQueue(Bot, BotCand);

4045 assert(TCand.SU == BotCand.SU &&

4046 "Last pick result should correspond to re-picking right now");

4047 }

4048#endif

4049 }

4050

4051

4053 if (!TopCand.isValid() || TopCand.SU->isScheduled ||

4054 TopCand.Policy != TopPolicy) {

4056 pickNodeFromQueue(Top, TopCand);

4057 assert(TopCand.Reason != NoCand && "failed to find the first candidate");

4058 } else {

4060#ifndef NDEBUG

4064 pickNodeFromQueue(Top, TopCand);

4065 assert(TCand.SU == TopCand.SU &&

4066 "Last pick result should correspond to re-picking right now");

4067 }

4068#endif

4069 }

4070

4071

4072 assert(BotCand.isValid());

4073 assert(TopCand.isValid());

4076 if (tryCandidate(Cand, TopCand)) {

4079 }

4080

4081 IsTopNode = Cand.AtTop;

4083 return Cand.SU;

4084}

4085

4086

4088 if (DAG->top() == DAG->bottom()) {

4089 assert(Top.Available.empty() && Top.Pending.empty() &&

4090 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");

4091 return nullptr;

4092 }

4094 do {

4096 SU = Bot.pickOnlyChoice();

4097 if (SU) {

4099 } else {

4101 BotCand.reset(NoPolicy);

4102

4103

4104 setPolicy(BotCand.Policy, true, Bot, nullptr);

4105 pickNodeFromQueue(Bot, BotCand);

4106 assert(BotCand.Reason != NoCand && "failed to find a candidate");

4108 SU = BotCand.SU;

4109 }

4110 IsTopNode = false;

4112 SU = Top.pickOnlyChoice();

4113 if (SU) {

4115 } else {

4117 TopCand.reset(NoPolicy);

4118

4119

4120 setPolicy(TopCand.Policy, true, Top, nullptr);

4121 pickNodeFromQueue(Top, TopCand);

4122 assert(TopCand.Reason != NoCand && "failed to find a candidate");

4124 SU = TopCand.SU;

4125 }

4126 IsTopNode = true;

4127 } else {

4128 SU = pickNodeBidirectional(IsTopNode);

4129 }

4131

4133 Top.removeReady(SU);

4135 Bot.removeReady(SU);

4136

4139 return SU;

4140}

4141

4142

4143

4145 if (IsTopNode) {

4147 Top.bumpNode(SU);

4148 } else {

4150 Bot.bumpNode(SU);

4151 }

4152}

4153

4156 new ScheduleDAGMI(C, std::make_unique(C),

4157 true);

4159

4161 if (!MacroFusions.empty())

4163 return DAG;

4164}

4165

4166

4167

4168

4169

4170namespace {

4171

4172

4173struct ILPOrder {

4175 const BitVector *ScheduledTrees = nullptr;

4176 bool MaximizeILP;

4177

4178 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}

4179

4180

4181

4182

4183 bool operator()(const SUnit *A, const SUnit *B) const {

4184 unsigned SchedTreeA = DFSResult->getSubtreeID(A);

4185 unsigned SchedTreeB = DFSResult->getSubtreeID(B);

4186 if (SchedTreeA != SchedTreeB) {

4187

4188 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))

4189 return ScheduledTrees->test(SchedTreeB);

4190

4191

4196 }

4197 }

4198 if (MaximizeILP)

4200 else

4202 }

4203};

4204

4205

4208 ILPOrder Cmp;

4209

4210 std::vector<SUnit*> ReadyQ;

4211

4212public:

4213 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}

4214

4222 }

4223

4224 void registerRoots() override {

4225

4226 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);

4227 }

4228

4229

4230

4231

4232

4233 SUnit *pickNode(bool &IsTopNode) override {

4234 if (ReadyQ.empty()) return nullptr;

4235 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);

4236 SUnit *SU = ReadyQ.back();

4237 ReadyQ.pop_back();

4238 IsTopNode = false;

4240 << "SU(" << SU->NodeNum << ") "

4243 << " @"

4246 << '\n'

4247 << "Scheduling " << *SU->getInstr());

4248 return SU;

4249 }

4250

4251

4252 void scheduleTree(unsigned SubtreeID) override {

4253 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);

4254 }

4255

4256

4257

4258 void schedNode(SUnit *SU, bool IsTopNode) override {

4259 assert(!IsTopNode && "SchedDFSResult needs bottom-up");

4260 }

4261

4262 void releaseTopNode(SUnit *) override { }

4263

4264 void releaseBottomNode(SUnit *SU) override {

4265 ReadyQ.push_back(SU);

4266 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);

4267 }

4268};

4269

4270}

4271

4273 return new ScheduleDAGMILive(C, std::make_unique(true));

4274}

4276 return new ScheduleDAGMILive(C, std::make_unique(false));

4277}

4278

4283

4284

4285

4286

4287

4288#ifndef NDEBUG

4289namespace {

4290

4291

4292

4293template

4294struct SUnitOrder {

4296 if (IsReverse)

4297 return A->NodeNum > B->NodeNum;

4298 else

4299 return A->NodeNum < B->NodeNum;

4300 }

4301};

4302

4303

4305 bool IsAlternating;

4306 bool IsTopDown;

4307

4308

4309

4310

4312 TopQ;

4313

4314

4316 BottomQ;

4317

4318public:

4319 InstructionShuffler(bool alternate, bool topdown)

4320 : IsAlternating(alternate), IsTopDown(topdown) {}

4321

4324 BottomQ.clear();

4325 }

4326

4327

4328

4329

4330 SUnit *pickNode(bool &IsTopNode) override {

4332 if (IsTopDown) {

4333 do {

4334 if (TopQ.empty()) return nullptr;

4335 SU = TopQ.top();

4336 TopQ.pop();

4338 IsTopNode = true;

4339 } else {

4340 do {

4341 if (BottomQ.empty()) return nullptr;

4342 SU = BottomQ.top();

4343 BottomQ.pop();

4345 IsTopNode = false;

4346 }

4347 if (IsAlternating)

4348 IsTopDown = !IsTopDown;

4349 return SU;

4350 }

4351

4352 void schedNode(SUnit *SU, bool IsTopNode) override {}

4353

4354 void releaseTopNode(SUnit *SU) override {

4355 TopQ.push(SU);

4356 }

4357 void releaseBottomNode(SUnit *SU) override {

4358 BottomQ.push(SU);

4359 }

4360};

4361

4362}

4363

4365 bool Alternate =

4369 C, std::make_unique(Alternate, TopDown));

4370}

4371

4373 "shuffle", "Shuffle machine instructions alternating directions",

4375#endif

4376

4377

4378

4379

4380

4381#ifndef NDEBUG

4382namespace llvm {

4383

4386

4387template<>

4390

4392 return std::string(G->MF.getName());

4393 }

4394

4396 return true;

4397 }

4398

4401 return false;

4404 }

4405

4406

4407

4412 return "color=cyan,style=dashed";

4414 return "color=blue,style=dashed";

4415 return "";

4416 }

4417

4419 std::string Str;

4424 SS << "SU:" << SU->NodeNum;

4425 if (DFS)

4427 return Str;

4428 }

4429

4431 return G->getGraphNodeLabel(SU);

4432 }

4433

4435 std::string Str("shape=Mrecord");

4439 if (DFS) {

4440 Str += ",style=filled,fillcolor=\"#";

4442 Str += '"';

4443 }

4444 return Str;

4445 }

4446};

4447

4448}

4449#endif

4450

4451

4452

4454#ifndef NDEBUG

4456#else

4457 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "

4458 << "systems with Graphviz or gv!\n";

4459#endif

4460}

4461

4462

4464 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());

4465}

4466

4467

4468

4469

4470

4473 return A.first < B.first;

4474}

4475

4476unsigned ResourceSegments::getFirstAvailableAt(

4477 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle,

4479 IntervalBuilder) const {

4480 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals),

4482 "Cannot execute on an un-sorted set of intervals.");

4483

4484

4485

4486 if (AcquireAtCycle == ReleaseAtCycle)

4487 return CurrCycle;

4488

4489 unsigned RetCycle = CurrCycle;

4491 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);

4492 for (auto &Interval : _Intervals) {

4494 continue;

4495

4496

4497

4499 "Invalid intervals configuration.");

4500 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first;

4501 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);

4502 }

4503 return RetCycle;

4504}

4505

4507 const unsigned CutOff) {

4508 assert(A.first <= A.second && "Cannot add negative resource usage");

4509 assert(CutOff > 0 && "0-size interval history has no use.");

4510

4511

4512

4513

4514

4515 if (A.first == A.second)

4516 return;

4517

4521 }) &&

4522 "A resource is being overwritten");

4523 _Intervals.push_back(A);

4524

4525 sortAndMerge();

4526

4527

4528

4529 while (_Intervals.size() > CutOff)

4530 _Intervals.pop_front();

4531}

4532

4535 assert(A.first <= A.second && "Invalid interval");

4536 assert(B.first <= B.second && "Invalid interval");

4537

4538

4539 if ((A.first == B.first) || (A.second == B.second))

4540 return true;

4541

4542

4543

4544 if ((A.first > B.first) && (A.second < B.second))

4545 return true;

4546

4547

4548

4549 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second))

4550 return true;

4551

4552

4553

4554 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first))

4555 return true;

4556

4557 return false;

4558}

4559

4560void ResourceSegments::sortAndMerge() {

4561 if (_Intervals.size() <= 1)

4562 return;

4563

4564

4566

4567

4568 auto next = std::next(std::begin(_Intervals));

4569 auto E = std::end(_Intervals);

4570 for (; next != E; ++next) {

4571 if (std::prev(next)->second >= next->first) {

4572 next->first = std::prev(next)->first;

4573 _Intervals.erase(std::prev(next));

4574 continue;

4575 }

4576 }

4577}

MachineInstrBuilder MachineInstrBuilder & DefMI

static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)

static const Function * getParent(const Value *V)

This file implements the BitVector class.

static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")

static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")

static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")

static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")

COFF::MachineTypes Machine

#define clEnumValN(ENUMVAL, FLAGNAME, DESC)

#define LLVM_DUMP_METHOD

Mark debug helper function definitions like dump() that should not be stripped from debug builds.

static std::optional< ArrayRef< InsnRange >::iterator > intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef< InsnRange > &Ranges, const InstructionOrdering &Ordering)

Check if the instruction range [StartMI, EndMI] intersects any instruction range in Ranges.

Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx

This file defines the DenseMap class.

const HexagonInstrInfo * TII

A common definition of LaneBitmask for use in TableGen and CodeGen.

static bool isSchedBoundary(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB, MachineFunction *MF, const TargetInstrInfo *TII)

Return true of the given instruction should not be included in a scheduling region.

static MachineSchedRegistry ILPMaxRegistry("ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler)

static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop)

static cl::opt< bool > EnableMemOpCluster("misched-cluster", cl::Hidden, cl::desc("Enable memop clustering."), cl::init(true))

Machine Instruction Scheduler

static MachineBasicBlock::const_iterator nextIfDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator End)

If this iterator is a debug value, increment until reaching the End or a non-debug instruction.

static const unsigned MinSubtreeSize

static const unsigned InvalidCycle

static cl::opt< bool > MISchedSortResourcesInTrace("misched-sort-resources-in-trace", cl::Hidden, cl::init(true), cl::desc("Sort the resources printed in the dump trace"))

static cl::opt< bool > EnableCyclicPath("misched-cyclicpath", cl::Hidden, cl::desc("Enable cyclic critical path analysis."), cl::init(true))

static MachineBasicBlock::const_iterator priorNonDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator Beg)

Decrement this iterator until reaching the top or a non-debug instr.

static cl::opt< MachineSchedRegistry::ScheduleDAGCtor, false, RegisterPassParser< MachineSchedRegistry > > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use"))

MachineSchedOpt allows command line selection of the scheduler.

static cl::opt< bool > EnableMachineSched("enable-misched", cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), cl::Hidden)

static unsigned computeRemLatency(SchedBoundary &CurrZone)

Compute remaining latency.

static cl::opt< unsigned > MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U))

static cl::opt< unsigned > SchedOnlyBlock("misched-only-block", cl::Hidden, cl::desc("Only schedule this MBB#"))

static cl::opt< bool > EnableRegPressure("misched-regpressure", cl::Hidden, cl::desc("Enable register pressure scheduling."), cl::init(true))

static MachineSchedRegistry GenericSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched)

static cl::opt< unsigned > HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, cl::desc("Set width of the columns with " "the resources and schedule units"), cl::init(19))

static cl::opt< bool > ForceFastCluster("force-fast-cluster", cl::Hidden, cl::desc("Switch to fast cluster algorithm with the lost " "of some fusion opportunities"), cl::init(false))

static cl::opt< unsigned > FastClusterThreshold("fast-cluster-threshold", cl::Hidden, cl::desc("The threshold for fast cluster"), cl::init(1000))

static bool checkResourceLimit(unsigned LFactor, unsigned Count, unsigned Latency, bool AfterSchedNode)

Given a Count of resource usage and a Latency value, return true if a SchedBoundary becomes resource ...

static ScheduleDAGInstrs * createInstructionShuffler(MachineSchedContext *C)

static ScheduleDAGInstrs * useDefaultMachineSched(MachineSchedContext *C)

A dummy default scheduler factory indicates whether the scheduler is overridden on the command line.

static bool sortIntervals(const ResourceSegments::IntervalTy &A, const ResourceSegments::IntervalTy &B)

Sort predicate for the intervals stored in an instance of ResourceSegments.

static cl::opt< unsigned > ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, cl::desc("Set width of the columns showing resource booking."), cl::init(5))

static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched)

static cl::opt< std::string > SchedOnlyFunc("misched-only-func", cl::Hidden, cl::desc("Only schedule this function"))

static const char * scheduleTableLegend

static ScheduleDAGInstrs * createConvergingSched(MachineSchedContext *C)

static cl::opt< unsigned > ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, cl::desc("Hide nodes with more predecessor/successor than cutoff"))

In some situations a few uninteresting nodes depend on nearly all other nodes in the graph,...

static MachineSchedRegistry ShufflerRegistry("shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler)

static cl::opt< bool > EnablePostRAMachineSched("enable-post-misched", cl::desc("Enable the post-ra machine instruction scheduling pass."), cl::init(true), cl::Hidden)

static void getSchedRegions(MachineBasicBlock *MBB, MBBRegionsVector &Regions, bool RegionsTopDown)

static cl::opt< unsigned > MIResourceCutOff("misched-resource-cutoff", cl::Hidden, cl::desc("Number of intervals to track"), cl::init(10))

static ScheduleDAGInstrs * createILPMaxScheduler(MachineSchedContext *C)

static cl::opt< unsigned > ReadyListLimit("misched-limit", cl::Hidden, cl::desc("Limit ready list to N instructions"), cl::init(256))

Avoid quadratic complexity in unusually large basic blocks by limiting the size of the ready lists.

static ScheduleDAGInstrs * createILPMinScheduler(MachineSchedContext *C)

static cl::opt< bool > MISchedDumpScheduleTrace("misched-dump-schedule-trace", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))

static MachineSchedRegistry ILPMinRegistry("ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler)

unsigned const TargetRegisterInfo * TRI

std::pair< uint64_t, uint64_t > Interval

#define INITIALIZE_PASS_DEPENDENCY(depName)

#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)

#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)

This file defines the PriorityQueue class.

assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())

static bool isSimple(Instruction *I)

This file defines the SmallVector class.

This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...

#define STATISTIC(VARNAME, DESC)

static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)

Initialize the set of available library functions based on the specified target triple.

This file describes how to lower LLVM code to machine code.

Target-Independent Code Generator Pass Configuration Options pass.

static const X86InstrFMA3Group Groups[]

Class recording the (high level) value of a variable.

A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.

Class for arbitrary precision integers.

Represent the analysis usage information of a pass.

AnalysisUsage & addRequired()

AnalysisUsage & addPreserved()

Add the specified Pass class to the set of analyses preserved by this pass.

void setPreservesCFG()

This function should be called by the pass, iff they do not:

ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...

reverse_iterator rend() const

size_t size() const

size - Get the array size.

bool empty() const

empty - Check if the array is empty.

reverse_iterator rbegin() const

bool test(unsigned Idx) const

void resize(unsigned N, bool t=false)

resize - Grow or shrink the bitvector.

void clear()

clear - Removes all bits from the bitvector.

This class represents an Operation in the Expression.

size_type count(const_arg_type_t< KeyT > Val) const

Return 1 if the specified key is in the map, 0 otherwise.

void traceCandidate(const SchedCandidate &Cand)

void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, SchedBoundary *OtherZone)

Set the CandPolicy given a scheduling zone given the current resources and latencies inside and outsi...

MachineSchedPolicy RegionPolicy

const TargetSchedModel * SchedModel

static const char * getReasonStr(GenericSchedulerBase::CandReason Reason)

const MachineSchedContext * Context

CandReason

Represent the type of SchedCandidate found within a single queue.

const TargetRegisterInfo * TRI

void checkAcyclicLatency()

Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic critical path by more cycle...

virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary *Zone) const

Apply a set of heuristics to a new candidate.

void dumpPolicy() const override

void initialize(ScheduleDAGMI *dag) override

Initialize the strategy after building the DAG for a new region.

void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker)

void registerRoots() override

Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...

void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override

Initialize the per-region scheduling policy.

void reschedulePhysReg(SUnit *SU, bool isTop)

SUnit * pickNode(bool &IsTopNode) override

Pick the best node to balance the schedule. Implements MachineSchedStrategy.

void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Candidate)

Pick the best candidate from the queue.

void schedNode(SUnit *SU, bool IsTopNode) override

Update the scheduler's state after scheduling a node.

SUnit * pickNodeBidirectional(bool &IsTopNode)

Pick the best candidate node from either the top or bottom queue.

bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override

Get the base register and byte offset of a load/store instr.

bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override

Test if the given instruction should be considered a scheduling boundary.

Itinerary data supplied by a subtarget to be used by a target.

LiveInterval - This class represents the liveness of a register, or stack slot.

MachineInstr * getInstructionFromIndex(SlotIndex index) const

Returns the instruction associated with the given index.

void handleMove(MachineInstr &MI, bool UpdateFlags=false)

Call this method to notify LiveIntervals that instruction MI has been moved within a basic block.

SlotIndex getInstructionIndex(const MachineInstr &Instr) const

Returns the base index of the given instruction.

SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const

Return the last index in the given basic block.

LiveInterval & getInterval(Register Reg)

Result of a LiveRange query.

VNInfo * valueIn() const

Return the value that is live-in to the instruction.

LiveQueryResult Query(SlotIndex Idx) const

Query Liveness at Idx.

VNInfo * getVNInfoBefore(SlotIndex Idx) const

getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...

SlotIndex beginIndex() const

beginIndex - Return the lowest numbered slot covered.

SlotIndex endIndex() const

endNumber - return the maximum point of the range of the whole, exclusive.

bool isLocal(SlotIndex Start, SlotIndex End) const

True iff this segment is a single segment that lies between the specified boundaries,...

iterator find(SlotIndex Pos)

find - Return an iterator pointing to the first segment that ends after Pos, or end().

int getNumber() const

MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...

const MachineFunction * getParent() const

Return the MachineFunction containing this basic block.

bool isSuccessor(const MachineBasicBlock *MBB) const

Return true if the specified MBB is a successor of this block.

void splice(iterator Where, MachineBasicBlock *Other, iterator From)

Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...

StringRef getName() const

Return the name of the corresponding LLVM basic block, or an empty string.

Analysis pass which computes a MachineDominatorTree.

MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...

void getAnalysisUsage(AnalysisUsage &AU) const override

getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.

const TargetSubtargetInfo & getSubtarget() const

getSubtarget - Return the subtarget for which this machine code is being compiled.

Function & getFunction()

Return the LLVM function that this machine code represents.

void print(raw_ostream &OS, const SlotIndexes *=nullptr) const

print - Print out the MachineFunction in a format suitable for debugging to the specified stream.

nonconst_iterator getNonConstIterator() const

Representation of each machine instruction.

bool mayLoad(QueryType Type=AnyInBundle) const

Return true if this instruction could possibly read memory.

bool mayStore(QueryType Type=AnyInBundle) const

Return true if this instruction could possibly modify memory.

MachineOperand class - Representation of each machine instruction operand.

MachinePassRegistry - Track the registration of machine passes.

unsigned getNumVirtRegs() const

getNumVirtRegs - Return the number of virtual registers created.

MachineSchedRegistry provides a selection of available machine instruction schedulers.

static MachinePassRegistry< ScheduleDAGCtor > Registry

ScheduleDAGInstrs *(*)(MachineSchedContext *) ScheduleDAGCtor

MachineSchedStrategy - Interface to the scheduling algorithm used by ScheduleDAGMI.

A Module instance is used to store all the information related to an LLVM module.

static PassRegistry * getPassRegistry()

getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...

void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override

Optionally override the per-region scheduling policy.

virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand)

Apply a set of heuristics to a new candidate for PostRA scheduling.

void schedNode(SUnit *SU, bool IsTopNode) override

Called after ScheduleDAGMI has scheduled an instruction and updated scheduled/remaining flags in the ...

void pickNodeFromQueue(SchedBoundary &Zone, SchedCandidate &Cand)

void initialize(ScheduleDAGMI *Dag) override

Initialize the strategy after building the DAG for a new region.

SUnit * pickNodeBidirectional(bool &IsTopNode)

Pick the best candidate node from either the top or bottom queue.

void registerRoots() override

Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...

SUnit * pickNode(bool &IsTopNode) override

Pick the next node to schedule.

Capture a change in pressure for a single pressure set.

unsigned getPSetOrMax() const

List of PressureChanges in order of increasing, unique PSetID.

void dump(const TargetRegisterInfo &TRI) const

void addPressureChange(Register RegUnit, bool IsDec, const MachineRegisterInfo *MRI)

Add a change in pressure to the pressure diff of a given instruction.

PriorityQueue - This class behaves like std::priority_queue and provides a few additional convenience...

void clear()

clear - Erase all elements from the queue.

Helpers for implementing custom MachineSchedStrategy classes.

ArrayRef< SUnit * > elements()

bool isInQueue(SUnit *SU) const

std::vector< SUnit * >::iterator iterator

StringRef getName() const

iterator remove(iterator I)

Track the current register pressure at some position in the instruction stream, and remember the high...

void closeRegion()

Finalize the region boundaries and recored live ins and live outs.

void recede(SmallVectorImpl< RegisterMaskPair > *LiveUses=nullptr)

Recede across the previous instruction.

void setPos(MachineBasicBlock::const_iterator Pos)

ArrayRef< unsigned > getLiveThru() const

void closeBottom()

Set the boundary for the bottom of the region and summarize live outs.

RegisterPressure & getPressure()

Get the resulting register pressure over the traversed region.

void recedeSkipDebugValues()

Recede until we find an instruction which is not a DebugValue.

void getMaxUpwardPressureDelta(const MachineInstr *MI, PressureDiff *PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)

Consider the pressure increase caused by traversing this instruction bottom-up.

void initLiveThru(const RegPressureTracker &RPTracker)

Initialize the LiveThru pressure set based on the untied defs found in RPTracker.

void init(const MachineFunction *mf, const RegisterClassInfo *rci, const LiveIntervals *lis, const MachineBasicBlock *mbb, MachineBasicBlock::const_iterator pos, bool TrackLaneMasks, bool TrackUntiedDefs)

Setup the RegPressureTracker.

MachineBasicBlock::const_iterator getPos() const

Get the MI position corresponding to this register pressure.

void closeTop()

Set the boundary for the top of the region and summarize live ins.

void getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)

Consider the pressure increase caused by traversing this instruction top-down.

void advance()

Advance across the current instruction.

const std::vector< unsigned > & getRegSetPressureAtPos() const

Get the register set pressure at the current position, which may be less than the pressure across the...

void addLiveRegs(ArrayRef< RegisterMaskPair > Regs)

Force liveness of virtual registers or physical register units.

void getUpwardPressureDelta(const MachineInstr *MI, PressureDiff &PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit) const

This is the fast version of querying register pressure that does not directly depend on current liven...

unsigned getNumAllocatableRegs(const TargetRegisterClass *RC) const

getNumAllocatableRegs - Returns the number of actually allocatable registers in RC in the current fun...

unsigned getRegPressureSetLimit(unsigned Idx) const

Get the register unit limit for the given pressure set index.

List of registers defined and used by a machine instruction.

void collect(const MachineInstr &MI, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI, bool TrackLaneMasks, bool IgnoreDead)

Analyze the given instruction MI and fill in the Uses, Defs and DeadDefs list based on the MachineOpe...

void adjustLaneLiveness(const LiveIntervals &LIS, const MachineRegisterInfo &MRI, SlotIndex Pos, MachineInstr *AddFlagsMI=nullptr)

Use liveness information to find out which uses/defs are partially undefined/dead and adjust the Regi...

void detectDeadDefs(const MachineInstr &MI, const LiveIntervals &LIS)

Use liveness information to find dead defs not marked with a dead flag and move them to the DeadDefs ...

RegisterPassParser class - Handle the addition of new machine passes.

Wrapper class representing virtual and physical registers.

constexpr bool isVirtual() const

Return true if the specified register number is in the virtual register namespace.

static constexpr bool isPhysicalRegister(unsigned Reg)

Return true if the specified register number is in the physical register namespace.

void add(IntervalTy A, const unsigned CutOff=10)

Adds an interval [a, b) to the collection of the instance.

static IntervalTy getResourceIntervalBottom(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)

These function return the interval used by a resource in bottom and top scheduling.

static bool intersects(IntervalTy A, IntervalTy B)

Checks whether intervals intersect.

std::pair< int64_t, int64_t > IntervalTy

Represents an interval of discrete integer values closed on the left and open on the right: [a,...

static IntervalTy getResourceIntervalTop(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)

Kind getKind() const

Returns an enum value representing the kind of the dependence.

@ Anti

A register anti-dependence (aka WAR).

@ Data

Regular data dependence (aka true-dependence).

bool isWeak() const

Tests if this a weak dependence.

@ Cluster

Weak DAG edge linking a chain of clustered instrs.

@ Artificial

Arbitrary strong DAG edge (no real dependence).

@ Weak

Arbitrary weak DAG edge.

unsigned getLatency() const

Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...

bool isArtificial() const

Tests if this is an Order dependence that is marked as "artificial", meaning it isn't necessary for c...

bool isCtrl() const

Shorthand for getKind() != SDep::Data.

unsigned getReg() const

Returns the register associated with this edge.

bool isCluster() const

Tests if this is an Order dependence that is marked as "cluster", meaning it is artificial and wants ...

bool isArtificialDep() const

bool isCtrlDep() const

Tests if this is not an SDep::Data dependence.

Scheduling unit. This is a node in the scheduling DAG.

bool isCall

Is a function call.

unsigned TopReadyCycle

Cycle relative to start when node is ready.

unsigned NodeNum

Entry # of node in the node vector.

void biasCriticalPath()

Orders this node's predecessor edges such that the critical path edge occurs first.

bool isUnbuffered

Uses an unbuffered resource.

unsigned getHeight() const

Returns the height of this node, which is the length of the maximum path down to any node which has n...

unsigned short Latency

Node latency.

unsigned getDepth() const

Returns the depth of this node, which is the length of the maximum path up to any node which has no p...

bool isScheduled

True once scheduled.

bool hasPhysRegDefs

Has physreg defs that are being used.

unsigned BotReadyCycle

Cycle relative to end when node is ready.

SmallVector< SDep, 4 > Succs

All sunit successors.

bool hasReservedResource

Uses a reserved resource.

bool isBottomReady() const

bool hasPhysRegUses

Has physreg uses.

SmallVector< SDep, 4 > Preds

All sunit predecessors.

MachineInstr * getInstr() const

Returns the representative MachineInstr for this SUnit.

Each Scheduling boundary is associated with ready queues.

unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)

Compute the next cycle at which the given processor resource unit can be scheduled.

void releasePending()

Release pending ready nodes in to the available queue.

unsigned getDependentLatency() const

unsigned getScheduledLatency() const

Get the number of latency cycles "covered" by the scheduled instructions.

void incExecutedResources(unsigned PIdx, unsigned Count)

bool isResourceLimited() const

const TargetSchedModel * SchedModel

unsigned getExecutedCount() const

Get a scaled count for the minimum execution time of the scheduled micro-ops that are ready to execut...

unsigned getLatencyStallCycles(SUnit *SU)

Get the difference between the given SUnit's ready time and the current cycle.

unsigned findMaxLatency(ArrayRef< SUnit * > ReadySUs)

void dumpReservedCycles() const

Dump the state of the information that tracks resource usage.

unsigned getOtherResourceCount(unsigned &OtherCritIdx)

void bumpNode(SUnit *SU)

Move the boundary of scheduled code by one SUnit.

unsigned getCriticalCount() const

Get the scaled count of scheduled micro-ops and resources, including executed resources.

SUnit * pickOnlyChoice()

Call this before applying any other heuristics to the Available queue.

void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, unsigned Idx=0)

Release SU to make it ready.

unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, unsigned Cycles, unsigned ReadyCycle, unsigned StartAtCycle)

Add the given processor resource to this scheduled zone.

ScheduleHazardRecognizer * HazardRec

bool isUnbufferedGroup(unsigned PIdx) const

void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem)

unsigned getResourceCount(unsigned ResIdx) const

void bumpCycle(unsigned NextCycle)

Move the boundary of scheduled code by one cycle.

unsigned getCurrMOps() const

Micro-ops issued in the current cycle.

unsigned getCurrCycle() const

Number of cycles to issue the instructions scheduled in this zone.

bool checkHazard(SUnit *SU)

Does this SU have a hazard within the current instruction group.

std::pair< unsigned, unsigned > getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)

Compute the next cycle at which the given processor resource can be scheduled.

void dumpScheduledState() const

void removeReady(SUnit *SU)

Remove SU from the ready set for this boundary.

unsigned getZoneCritResIdx() const

unsigned getUnscheduledLatency(SUnit *SU) const

Compute the values of each DAG node for various metrics during DFS.

unsigned getNumInstrs(const SUnit *SU) const

Get the number of instructions in the given subtree and its children.

unsigned getSubtreeID(const SUnit *SU) const

Get the ID of the subtree the given DAG node belongs to.

void clear()

Clear the results.

ILPValue getILP(const SUnit *SU) const

Get the ILP value for a DAG node.

void compute(ArrayRef< SUnit > SUnits)

Compute various metrics for the DAG with given roots.

unsigned getNumSubtrees() const

The number of subtrees detected in this DAG.

unsigned getSubtreeLevel(unsigned SubtreeID) const

Get the connection level of a subtree.

void resize(unsigned NumSUnits)

Initialize the result data with the size of the DAG.

void scheduleTree(unsigned SubtreeID)

Scheduler callback to update SubtreeConnectLevels when a tree is initially scheduled.

A ScheduleDAG for scheduling lists of MachineInstr.

virtual void finishBlock()

Cleans up after scheduling in the given block.

MachineBasicBlock::iterator end() const

Returns an iterator to the bottom of the current scheduling region.

MachineBasicBlock * BB

The block in which to insert instructions.

MachineInstr * FirstDbgValue

virtual void startBlock(MachineBasicBlock *BB)

Prepares to perform scheduling in the given block.

const TargetSchedModel * getSchedModel() const

Gets the machine model for instruction scheduling.

MachineBasicBlock::iterator RegionEnd

The end of the range to be scheduled.

const MCSchedClassDesc * getSchedClass(SUnit *SU) const

Resolves and cache a resolved scheduling class for an SUnit.

DbgValueVector DbgValues

Remember instruction that precedes DBG_VALUE.

bool addEdge(SUnit *SuccSU, const SDep &PredDep)

Add a DAG edge to the given SU with the given predecessor dependence data.

DumpDirection

The direction that should be used to dump the scheduled Sequence.

bool TrackLaneMasks

Whether lane masks should get tracked.

void dumpNode(const SUnit &SU) const override

bool IsReachable(SUnit *SU, SUnit *TargetSU)

IsReachable - Checks if SU is reachable from TargetSU.

MachineBasicBlock::iterator begin() const

Returns an iterator to the top of the current scheduling region.

void buildSchedGraph(AAResults *AA, RegPressureTracker *RPTracker=nullptr, PressureDiffs *PDiffs=nullptr, LiveIntervals *LIS=nullptr, bool TrackLaneMasks=false)

Builds SUnits for the current region.

SUnit * getSUnit(MachineInstr *MI) const

Returns an existing SUnit for this MI, or nullptr.

TargetSchedModel SchedModel

TargetSchedModel provides an interface to the machine model.

bool canAddEdge(SUnit *SuccSU, SUnit *PredSU)

True if an edge can be added from PredSU to SuccSU without creating a cycle.

MachineBasicBlock::iterator RegionBegin

The beginning of the range to be scheduled.

virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs)

Initialize the DAG and common scheduler state for a new scheduling region.

void dump() const override

void setDumpDirection(DumpDirection D)

ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules machine instructions while...

void scheduleMI(SUnit *SU, bool IsTopNode)

Move an instruction and update register pressure.

void schedule() override

Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.

VReg2SUnitMultiMap VRegUses

Maps vregs to the SUnits of their uses in the current scheduling region.

void computeDFSResult()

Compute a DFSResult after DAG building is complete, and before any queue comparisons.

PressureDiff & getPressureDiff(const SUnit *SU)

SchedDFSResult * DFSResult

Information about DAG subtrees.

void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override

Implement the ScheduleDAGInstrs interface for handling the next scheduling region.

void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)

Release ExitSU predecessors and setup scheduler queues.

void updatePressureDiffs(ArrayRef< RegisterMaskPair > LiveUses)

Update the PressureDiff array for liveness after scheduling this instruction.

bool ShouldTrackLaneMasks

RegPressureTracker BotRPTracker

void buildDAGWithRegPressure()

Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking enabled.

std::vector< PressureChange > RegionCriticalPSets

List of pressure sets that exceed the target's pressure limit before scheduling, listed in increasing...

void updateScheduledPressure(const SUnit *SU, const std::vector< unsigned > &NewMaxPressure)

PressureDiffs SUPressureDiffs

unsigned computeCyclicCriticalPath()

Compute the cyclic critical path through the DAG.

void collectVRegUses(SUnit &SU)

RegisterClassInfo * RegClassInfo

const SchedDFSResult * getDFSResult() const

Return a non-null DFS result if the scheduling strategy initialized it.

RegPressureTracker RPTracker

bool ShouldTrackPressure

Register pressure in this region computed by initRegPressure.

~ScheduleDAGMILive() override

void dump() const override

BitVector & getScheduledTrees()

MachineBasicBlock::iterator LiveRegionEnd

RegPressureTracker TopRPTracker

ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...

void dumpSchedule() const

dump the scheduled Sequence.

std::unique_ptr< MachineSchedStrategy > SchedImpl

void startBlock(MachineBasicBlock *bb) override

Prepares to perform scheduling in the given block.

void releasePred(SUnit *SU, SDep *PredEdge)

ReleasePred - Decrement the NumSuccsLeft count of a predecessor.

void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)

Release ExitSU predecessors and setup scheduler queues.

void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)

Add a postprocessing step to the DAG builder.

void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos)

Change the position of an instruction within the basic block and update live ranges and region bounda...

void releasePredecessors(SUnit *SU)

releasePredecessors - Call releasePred on each of SU's predecessors.

void postProcessDAG()

Apply each ScheduleDAGMutation step in order.

const SUnit * NextClusterSucc

void dumpScheduleTraceTopDown() const

Print execution trace of the schedule top-down or bottom-up.

const SUnit * NextClusterPred

Record the next node in a scheduled cluster.

MachineBasicBlock::iterator top() const

void schedule() override

Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.

void findRootsAndBiasEdges(SmallVectorImpl< SUnit * > &TopRoots, SmallVectorImpl< SUnit * > &BotRoots)

MachineBasicBlock::iterator bottom() const

MachineBasicBlock::iterator CurrentBottom

The bottom of the unscheduled zone.

virtual bool hasVRegLiveness() const

Return true if this DAG supports VReg liveness and RegPressure.

void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override

Implement the ScheduleDAGInstrs interface for handling the next scheduling region.

LiveIntervals * getLIS() const

void viewGraph() override

Out-of-line implementation with no arguments is handy for gdb.

void releaseSucc(SUnit *SU, SDep *SuccEdge)

ReleaseSucc - Decrement the NumPredsLeft count of a successor.

void dumpScheduleTraceBottomUp() const

~ScheduleDAGMI() override

void finishBlock() override

Cleans up after scheduling in the given block.

const SUnit * getNextClusterPred() const

void updateQueues(SUnit *SU, bool IsTopNode)

Update scheduler DAG and queues after scheduling an instruction.

void placeDebugValues()

Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.

MachineBasicBlock::iterator CurrentTop

The top of the unscheduled zone.

void releaseSuccessors(SUnit *SU)

releaseSuccessors - Call releaseSucc on each of SU's successors.

const SUnit * getNextClusterSucc() const

std::vector< std::unique_ptr< ScheduleDAGMutation > > Mutations

Ordered list of DAG postprocessing steps.

Mutate the DAG as a postpass after normal DAG building.

MachineRegisterInfo & MRI

Virtual/real register map.

const TargetInstrInfo * TII

Target instruction information.

std::vector< SUnit > SUnits

The scheduling units.

const TargetRegisterInfo * TRI

Target processor register info.

SUnit EntrySU

Special node for the region entry.

MachineFunction & MF

Machine function.

void dumpNodeAll(const SUnit &SU) const

SUnit ExitSU

Special node for the region exit.

virtual void RecedeCycle()

RecedeCycle - This callback is invoked whenever the next bottom-up instruction to be scheduled cannot...

virtual void Reset()

Reset - This callback is invoked when a new block of instructions is about to be schedule.

virtual void EmitInstruction(SUnit *)

EmitInstruction - This callback is invoked when an instruction is emitted, to advance the hazard stat...

virtual void AdvanceCycle()

AdvanceCycle - This callback is invoked whenever the next top-down instruction to be scheduled cannot...

virtual HazardType getHazardType(SUnit *, int Stalls=0)

getHazardType - Return the hazard type of emitting this node.

SlotIndex - An opaque wrapper around machine indexes.

static bool isSameInstr(SlotIndex A, SlotIndex B)

isSameInstr - Return true if A and B refer to the same instruction.

SlotIndex getRegSlot(bool EC=false) const

Returns the register use/def slot in the current instruction for a normal or early-clobber def.

This class consists of common code factored out of the SmallVector class to reduce code duplication b...

void push_back(const T &Elt)

std::reverse_iterator< const_iterator > const_reverse_iterator

This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.

iterator find(const KeyT &Key)

Find an element by its key.

void clear()

Clears the set.

iterator end()

Returns an iterator past this container.

iterator insert(const ValueT &Val)

Insert a new element at the tail of the subset list.

iterator_base< SparseMultiSet * > iterator

void setUniverse(unsigned U)

Set the universe size which determines the largest key the set can hold.

Information about stack frame layout on the target.

StackDirection getStackGrowthDirection() const

getStackGrowthDirection - Return the direction the stack grows

TargetInstrInfo - Interface to description of machine instruction set.

virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const

Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...

virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const

Return the register class that should be used for the specified value type.

bool isTypeLegal(EVT VT) const

Return true if the target has native support for the specified value type.

This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...

Target-Independent Code Generator Pass Configuration Options.

TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...

virtual const char * getRegPressureSetName(unsigned Idx) const =0

Get the name of this register unit pressure set.

Provide an instruction scheduling machine model to CodeGen passes.

const char * getResourceName(unsigned PIdx) const

bool mustEndGroup(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const

Return true if current group must end.

unsigned getIssueWidth() const

Maximum number of micro-ops that may be scheduled per cycle.

unsigned getMicroOpFactor() const

Multiply number of micro-ops by this factor to normalize it relative to other resources.

ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const

bool hasInstrSchedModel() const

Return true if this machine model includes an instruction-level scheduling model.

bool mustBeginGroup(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const

Return true if new group must begin.

unsigned getLatencyFactor() const

Multiply cycle count by this factor to normalize it relative to other resources.

unsigned getResourceFactor(unsigned ResIdx) const

Multiply the number of units consumed for a resource by this factor to normalize it relative to other...

unsigned getMicroOpBufferSize() const

Number of micro-ops that may be buffered for OOO execution.

unsigned getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const

Return the number of issue slots required for this MI.

const MCProcResourceDesc * getProcResource(unsigned PIdx) const

Get a processor resource by ID for convenience.

unsigned getNumProcResourceKinds() const

Get the number of kinds of resources for this target.

const InstrItineraryData * getInstrItineraries() const

bool enableIntervals() const

ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const

TargetSubtargetInfo - Generic base class for all target subtargets.

virtual std::vector< MacroFusionPredTy > getMacroFusions() const

Get the list of MacroFusion predicates.

virtual bool enableMachineScheduler() const

True if the subtarget should run MachineScheduler after aggressive coalescing.

virtual void overridePostRASchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const

Override generic post-ra scheduling policy within a region.

virtual void overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const

Override generic scheduling policy within a region.

virtual bool enablePostRAMachineScheduler() const

True if the subtarget should run a machine scheduler after register allocation.

virtual const TargetFrameLowering * getFrameLowering() const

virtual const TargetInstrInfo * getInstrInfo() const

virtual const TargetLowering * getTargetLowering() const

Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...

VNInfo - Value Number Information.

SlotIndex def

The index of the defining instruction.

bool isPHIDef() const

Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...

int getNumOccurrences() const

This class implements an extremely fast bulk output stream that can only output to a stream.

A raw_ostream that writes to an std::string.

This provides a very simple, boring adaptor for a begin and end iterator into a range type.

#define llvm_unreachable(msg)

Marks that the current location is not supposed to be reachable.

@ C

The default llvm calling convention, compatible with C.

unsigned ID

LLVM IR allows to use arbitrary numbers as calling convention identifiers.

StringRef getColorString(unsigned NodeNumber)

Get a color string for this node number.

void apply(Opt *O, const Mod &M, const Mods &... Ms)

ValuesClass values(OptsTy... Options)

Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...

initializer< Ty > init(const Ty &Val)

This is an optimization pass for GlobalISel generic memory operations.

bool operator<(int64_t V1, const APSInt &V2)

void stable_sort(R &&Range)

bool all_of(R &&range, UnaryPredicate P)

Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.

cl::opt< bool > PrintDAGs

unsigned getWeakLeft(const SUnit *SU, bool isTop)

std::unique_ptr< ScheduleDAGMutation > createMacroFusionDAGMutation(ArrayRef< MacroFusionPredTy > Predicates, bool BranchOnly=false)

Create a DAG scheduling mutation to pair instructions back to back for instructions that benefit acco...

FormattedString right_justify(StringRef Str, unsigned Width)

right_justify - add spaces before string so total output is Width characters.

cl::opt< MISched::Direction > PostRADirection("misched-postra-direction", cl::Hidden, cl::desc("Post reg-alloc list scheduling direction"), cl::init(MISched::Unspecified), cl::values(clEnumValN(MISched::TopDown, "topdown", "Force top-down post reg-alloc list scheduling"), clEnumValN(MISched::BottomUp, "bottomup", "Force bottom-up post reg-alloc list scheduling"), clEnumValN(MISched::Bidirectional, "bidirectional", "Force bidirectional post reg-alloc list scheduling")))

iterator_range< T > make_range(T x, T y)

Convenience function for iterating over sub-ranges.

Printable PrintLaneMask(LaneBitmask LaneMask)

Create Printable object to print LaneBitmasks on a raw_ostream.

cl::opt< bool > MISchedDumpReservedCycles("misched-dump-reserved-cycles", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))

void initializePostMachineSchedulerPass(PassRegistry &)

cl::opt< bool > VerifyScheduling

char & MachineSchedulerID

MachineScheduler - This pass schedules machine instructions.

char & PostMachineSchedulerID

PostMachineScheduler - This pass schedules machine instructions postRA.

ScheduleDAGMILive * createGenericSchedLive(MachineSchedContext *C)

Create the standard converging machine scheduler.

cl::opt< bool > ViewMISchedDAGs

bool tryPressure(const PressureChange &TryP, const PressureChange &CandP, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason, const TargetRegisterInfo *TRI, const MachineFunction &MF)

void sort(IteratorTy Start, IteratorTy End)

Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI)

Create Printable object to print virtual registers and physical registers on a raw_ostream.

std::unique_ptr< ScheduleDAGMutation > createStoreClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)

If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...

raw_ostream & dbgs()

dbgs() - This returns a reference to a raw_ostream for debugging messages.

cl::opt< bool > DumpCriticalPathLength("misched-dcpl", cl::Hidden, cl::desc("Print critical path length to stdout"))

bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, SchedBoundary &Zone)

raw_fd_ostream & errs()

This returns a reference to a raw_ostream for standard error.

void initializeMachineSchedulerPass(PassRegistry &)

ScheduleDAGMI * createGenericSchedPostRA(MachineSchedContext *C)

Create a generic scheduler with no vreg liveness or DAG mutation passes.

FormattedString left_justify(StringRef Str, unsigned Width)

left_justify - append spaces after string so total output is Width characters.

cl::opt< MISched::Direction > PreRADirection

std::unique_ptr< ScheduleDAGMutation > createLoadClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)

If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...

bool tryGreater(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)

void ViewGraph(const GraphType &G, const Twine &Name, bool ShortNames=false, const Twine &Title="", GraphProgram::Name Program=GraphProgram::DOT)

ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, then cleanup.

void dumpRegSetPressure(ArrayRef< unsigned > SetPressure, const TargetRegisterInfo *TRI)

bool tryLess(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)

Return true if this heuristic determines order.

std::unique_ptr< ScheduleDAGMutation > createCopyConstrainDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI)

Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)

Prints virtual and physical registers with or without a TRI instance.

Printable printMBBReference(const MachineBasicBlock &MBB)

Prints a machine basic block reference.

cl::opt< bool > MischedDetailResourceBooking("misched-detail-resource-booking", cl::Hidden, cl::init(false), cl::desc("Show details of invoking getNextResoufceCycle."))

int biasPhysReg(const SUnit *SU, bool isTop)

Minimize physical register live ranges.

void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)

Implement std::swap in terms of BitVector swap.

static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G)

static std::string getEdgeAttributes(const SUnit *Node, SUnitIterator EI, const ScheduleDAG *Graph)

If you want to override the dot attributes printed for a particular edge, override this method.

static std::string getGraphName(const ScheduleDAG *G)

static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G)

static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G)

DOTGraphTraits(bool isSimple=false)

static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G)

static bool renderGraphFromBottomUp()

DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...

DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...

Policy for scheduling the next instruction in the candidate's zone.

Store the state used by GenericScheduler heuristics, required for the lifetime of one invocation of p...

void setBest(SchedCandidate &Best)

void reset(const CandPolicy &NewPolicy)

void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)

SchedResourceDelta ResDelta

Status of an instruction's critical resource consumption.

unsigned DemandedResources

static constexpr LaneBitmask getNone()

const unsigned * SubUnitsIdxBegin

Summarize the scheduling resources required for an instruction of a particular scheduling class.

Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...

MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...

RegisterClassInfo * RegClassInfo

virtual ~MachineSchedContext()

bool DisableLatencyHeuristic

bool ShouldTrackLaneMasks

Track LaneMasks to allow reordering of independent subregister writes of the same vreg.

PressureChange CriticalMax

PressureChange CurrentMax

RegisterPressure computed within a region of instructions delimited by TopPos and BottomPos.

SmallVector< RegisterMaskPair, 8 > LiveInRegs

List of live in virtual registers or physical register units.

std::vector< unsigned > MaxSetPressure

Map of max reg pressure indexed by pressure set ID, not class ID.

SmallVector< RegisterMaskPair, 8 > LiveOutRegs

Summarize the unscheduled region.

void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)

SmallVector< unsigned, 16 > RemainingCounts

bool IsAcyclicLatencyLimited

An individual mapping from virtual register number to SUnit.