LLVM: lib/Target/X86/X86FixupVectorConstants.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
24
25using namespace llvm;
26
27#define DEBUG_TYPE "x86-fixup-vector-constants"
28
29STATISTIC(NumInstChanges, "Number of instructions changes");
30
31namespace {
33public:
34 static char ID;
35
37
38 StringRef getPassName() const override {
39 return "X86 Fixup Vector Constants";
40 }
41
42 bool runOnMachineFunction(MachineFunction &MF) override;
43 bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
44 MachineInstr &MI);
45
46
47 MachineFunctionProperties getRequiredProperties() const override {
48 return MachineFunctionProperties().setNoVRegs();
49 }
50
51private:
52 const X86InstrInfo *TII = nullptr;
53 const X86Subtarget *ST = nullptr;
54 const MCSchedModel *SM = nullptr;
55};
56}
57
58char X86FixupVectorConstantsPass::ID = 0;
59
61
63 return new X86FixupVectorConstantsPass();
64}
65
66
67
68
71 for (Value *Op : C->operands()) {
74 continue;
75 if (!Res)
76 Res = OpC;
77 else if (Res != OpC)
78 return nullptr;
79 }
80 return Res;
81}
82
83
85 unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
86
89
93
94 return CInt->getValue();
95 }
96
99 return APInt::getSplat(NumBits, CFP->getValue().bitcastToAPInt());
100
101 return CFP->getValue().bitcastToAPInt();
102 }
103
107 assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
109 }
110 }
111
113 for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
116 if (!SubBits)
117 return std::nullopt;
118 assert(NumBits == (E * SubBits->getBitWidth()) &&
119 "Illegal vector element size");
120 Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
121 }
122 return Bits;
123 }
124
126 bool IsInteger = CDS->getElementType()->isIntegerTy();
127 bool IsFloat = CDS->getElementType()->isHalfTy() ||
128 CDS->getElementType()->isBFloatTy() ||
129 CDS->getElementType()->isFloatTy() ||
130 CDS->getElementType()->isDoubleTy();
131 if (IsInteger || IsFloat) {
133 unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
134 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
135 if (IsInteger)
136 Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
137 else
138 Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
139 I * EltBits);
140 }
141 return Bits;
142 }
143 }
144
145 return std::nullopt;
146}
147
149 unsigned NumBits) {
151 return Bits->zextOrTrunc(NumBits);
152 return std::nullopt;
153}
154
155
156
158 unsigned SplatBitWidth) {
159 const Type *Ty = C->getType();
160 assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
161 "Illegal splat width");
162
164 if (Bits->isSplat(SplatBitWidth))
165 return Bits->trunc(SplatBitWidth);
166
167
168
170 unsigned NumOps = CV->getNumOperands();
171 unsigned NumEltsBits = Ty->getScalarSizeInBits();
172 unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
173 if ((SplatBitWidth % NumEltsBits) == 0) {
174
175
177 for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
180 continue;
181 unsigned SplatIdx = Idx % NumScaleOps;
182 if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
183 Sequence[SplatIdx] = Elt;
184 continue;
185 }
186 }
187 return std::nullopt;
188 }
189
190
192 for (unsigned I = 0; I != NumScaleOps; ++I) {
193 if (!Sequence[I])
194 continue;
196 SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
197 continue;
198 }
199 return std::nullopt;
200 }
201 return SplatBits;
202 }
203 }
204
205 return std::nullopt;
206}
207
208
209
211 const APInt &Bits, unsigned NumSclBits) {
212 unsigned BitWidth = Bits.getBitWidth();
213
214 if (NumSclBits == 8) {
216 for (unsigned I = 0; I != BitWidth; I += 8)
217 RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
219 }
220
221 if (NumSclBits == 16) {
223 for (unsigned I = 0; I != BitWidth; I += 16)
224 RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
228 }
229
230 if (NumSclBits == 32) {
232 for (unsigned I = 0; I != BitWidth; I += 32)
233 RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
237 }
238
239 assert(NumSclBits == 64 && "Unhandled vector element width");
240
242 for (unsigned I = 0; I != BitWidth; I += 64)
243 RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
247}
248
249
250
252 unsigned , unsigned SplatBitWidth) {
253
256 return nullptr;
257
258
259
260 Type *SclTy = C->getType()->getScalarType();
262 NumSclBits = std::min(NumSclBits, SplatBitWidth);
263
264
265 NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
266 ? NumSclBits
267 : 64;
268
269
271}
272
274 unsigned ,
275 unsigned ScalarBitWidth) {
276 Type *SclTy = C->getType()->getScalarType();
279
280 if (NumBits > ScalarBitWidth) {
281
283 if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
284
285
286 if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
288
289
290 APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
291 return ConstantInt::get(Ctx, RawBits);
292 }
293 }
294 }
295
296 return nullptr;
297}
298
300 unsigned NumBits, unsigned NumElts,
301 unsigned SrcEltBitWidth) {
302 unsigned DstEltBitWidth = NumBits / NumElts;
303 assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
304 (DstEltBitWidth % SrcEltBitWidth) == 0 &&
305 (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
306
308 assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
309 (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
310 "Unexpected constant extension");
311
312
314 for (unsigned I = 0; I != NumElts; ++I) {
315 APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
317 (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
318 return nullptr;
319 TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
320 }
321
323 return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
324 SrcEltBitWidth);
325 }
326
327 return nullptr;
328}
330 unsigned NumElts, unsigned SrcEltBitWidth) {
331 return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
332}
334 unsigned NumElts, unsigned SrcEltBitWidth) {
335 return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
336}
337
338bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
341 unsigned Opc = MI.getOpcode();
342 MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
343 bool HasSSE2 = ST->hasSSE2();
344 bool HasSSE41 = ST->hasSSE41();
345 bool HasAVX2 = ST->hasAVX2();
346 bool HasDQI = ST->hasDQI();
347 bool HasBWI = ST->hasBWI();
348 bool HasVLX = ST->hasVLX();
351
352 struct FixupEntry {
353 int Op;
354 int NumCstElts;
355 int MemBitWidth;
356 std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
357 RebuildConstant;
358 };
359
360 auto NewOpcPreferable = [&](const FixupEntry &Fixup,
361 unsigned RegBitWidth) -> bool {
363 unsigned NewOpc = Fixup.Op;
366 unsigned BitsSaved = RegBitWidth - (Fixup.NumCstElts * Fixup.MemBitWidth);
367
368
369
370
371
374 if (OldTput != NewTput)
375 return NewTput < OldTput;
376
377 int LatTol = (BitsSaved + 127) / 128;
380 if (OldLat != NewLat)
381 return NewLat < (OldLat + LatTol);
382 }
383
384
385
386 return true;
387 };
388
390 unsigned OperandNo) {
391#ifdef EXPENSIVE_CHECKS
393 [](const FixupEntry &A, const FixupEntry &B) {
394 return (A.NumCstElts * A.MemBitWidth) <
395 (B.NumCstElts * B.MemBitWidth);
396 }) &&
397 "Constant fixup table not sorted in ascending constant size");
398#endif
400 "Unexpected number of operands!");
402 unsigned CstBitWidth = C->getType()->getPrimitiveSizeInBits();
403 RegBitWidth = RegBitWidth ? RegBitWidth : CstBitWidth;
404 for (const FixupEntry &Fixup : Fixups) {
405
406
407
408
409 if (Fixup.Op && (OptSize || NewOpcPreferable(Fixup, RegBitWidth))) {
410
411
412 if (Constant *NewCst = Fixup.RebuildConstant(
413 C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
414 unsigned NewCPI =
415 CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
417 MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
418 return true;
419 }
420 }
421 }
422 }
423 return false;
424 };
425
426
427
428
429
430
431
432
433
434
435 switch (Opc) {
436
437 case X86::MOVAPDrm:
438 case X86::MOVAPSrm:
439 case X86::MOVUPDrm:
440 case X86::MOVUPSrm: {
441
442 FixupEntry Fixups[] = {
445 return FixupConstant(Fixups, 128, 1);
446 }
447 case X86::VMOVAPDrm:
448 case X86::VMOVAPSrm:
449 case X86::VMOVUPDrm:
450 case X86::VMOVUPSrm: {
451 FixupEntry Fixups[] = {
452 {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
453 {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
456 {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
457 {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
458 {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
459 {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
462 {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
463 {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
464 {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
465 {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
466 return FixupConstant(Fixups, 128, 1);
467 }
468 case X86::VMOVAPDYrm:
469 case X86::VMOVAPSYrm:
470 case X86::VMOVUPDYrm:
471 case X86::VMOVUPSYrm: {
472 FixupEntry Fixups[] = {
474 {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
475 {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
477 {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
478 {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
479 {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
480 {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
482 {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
483 {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
484 {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
485 {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32,
487 return FixupConstant(Fixups, 256, 1);
488 }
489 case X86::VMOVAPDZ128rm:
490 case X86::VMOVAPSZ128rm:
491 case X86::VMOVUPDZ128rm:
492 case X86::VMOVUPSZ128rm: {
493 FixupEntry Fixups[] = {
494 {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst},
495 {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst},
498 {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst},
499 {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst},
500 {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst},
501 {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst},
504 {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst},
505 {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst},
506 {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst},
507 {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}};
508 return FixupConstant(Fixups, 128, 1);
509 }
510 case X86::VMOVAPDZ256rm:
511 case X86::VMOVAPSZ256rm:
512 case X86::VMOVUPDZ256rm:
513 case X86::VMOVUPSZ256rm: {
514 FixupEntry Fixups[] = {
516 {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst},
517 {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst},
519 {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst},
520 {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst},
521 {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst},
522 {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst},
524 {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst},
525 {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst},
526 {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst},
527 {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}};
528 return FixupConstant(Fixups, 256, 1);
529 }
530 case X86::VMOVAPDZrm:
531 case X86::VMOVAPSZrm:
532 case X86::VMOVUPDZrm:
533 case X86::VMOVUPSZrm: {
534 FixupEntry Fixups[] = {
537 {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst},
538 {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst},
540 {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst},
541 {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst},
542 {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst},
543 {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst},
545 {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst},
546 {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst},
547 {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst},
548 {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}};
549 return FixupConstant(Fixups, 512, 1);
550 }
551
552 case X86::MOVDQArm:
553 case X86::MOVDQUrm: {
554 FixupEntry Fixups[] = {
555 {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
556 {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
558 {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
559 {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
560 {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
561 {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
563 {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
564 {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
565 {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
566 {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
567 {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
568 {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
569 return FixupConstant(Fixups, 128, 1);
570 }
571 case X86::VMOVDQArm:
572 case X86::VMOVDQUrm: {
573 FixupEntry Fixups[] = {
574 {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
575 {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
579 {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
586 {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
594 return FixupConstant(Fixups, 128, 1);
595 }
596 case X86::VMOVDQAYrm:
597 case X86::VMOVDQUYrm: {
598 FixupEntry Fixups[] = {
599 {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
600 {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
601 {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
603 {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
604 {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
605 {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
607 {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
608 {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
609 {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
610 {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
611 {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
613 {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
614 {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
615 {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
616 {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
617 {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
618 {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
619 return FixupConstant(Fixups, 256, 1);
620 }
621 case X86::VMOVDQA32Z128rm:
622 case X86::VMOVDQA64Z128rm:
623 case X86::VMOVDQU32Z128rm:
624 case X86::VMOVDQU64Z128rm: {
625 FixupEntry Fixups[] = {
626 {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
627 {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
638 {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
639 {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
644 return FixupConstant(Fixups, 128, 1);
645 }
646 case X86::VMOVDQA32Z256rm:
647 case X86::VMOVDQA64Z256rm:
648 case X86::VMOVDQU32Z256rm:
649 case X86::VMOVDQU64Z256rm: {
650 FixupEntry Fixups[] = {
651 {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
652 {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
662 {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
663 {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
668 return FixupConstant(Fixups, 256, 1);
669 }
670 case X86::VMOVDQA32Zrm:
671 case X86::VMOVDQA64Zrm:
672 case X86::VMOVDQU32Zrm:
673 case X86::VMOVDQU64Zrm: {
674 FixupEntry Fixups[] = {
675 {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
676 {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
687 {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
688 {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
693 return FixupConstant(Fixups, 512, 1);
694 }
695 }
696
697 auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) {
698 if (OpSrc) {
699 if (const X86FoldTableEntry *Mem2Bcst =
701 unsigned OpBcst = Mem2Bcst->DstOp;
702 unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK;
704
705
706 return FixupConstant(Fixups, 0, OpNoBcst);
707 }
708 }
709 return false;
710 };
711
712
713
715 return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64);
716
717
718
719 if (HasVLX && !HasDQI) {
720 unsigned OpSrc32 = 0, OpSrc64 = 0;
721 switch (Opc) {
722 case X86::VANDPDrm:
723 case X86::VANDPSrm:
724 case X86::VPANDrm:
725 OpSrc32 = X86 ::VPANDDZ128rm;
726 OpSrc64 = X86 ::VPANDQZ128rm;
727 break;
728 case X86::VANDPDYrm:
729 case X86::VANDPSYrm:
730 case X86::VPANDYrm:
731 OpSrc32 = X86 ::VPANDDZ256rm;
732 OpSrc64 = X86 ::VPANDQZ256rm;
733 break;
734 case X86::VANDNPDrm:
735 case X86::VANDNPSrm:
736 case X86::VPANDNrm:
737 OpSrc32 = X86 ::VPANDNDZ128rm;
738 OpSrc64 = X86 ::VPANDNQZ128rm;
739 break;
740 case X86::VANDNPDYrm:
741 case X86::VANDNPSYrm:
742 case X86::VPANDNYrm:
743 OpSrc32 = X86 ::VPANDNDZ256rm;
744 OpSrc64 = X86 ::VPANDNQZ256rm;
745 break;
746 case X86::VORPDrm:
747 case X86::VORPSrm:
748 case X86::VPORrm:
749 OpSrc32 = X86 ::VPORDZ128rm;
750 OpSrc64 = X86 ::VPORQZ128rm;
751 break;
752 case X86::VORPDYrm:
753 case X86::VORPSYrm:
754 case X86::VPORYrm:
755 OpSrc32 = X86 ::VPORDZ256rm;
756 OpSrc64 = X86 ::VPORQZ256rm;
757 break;
758 case X86::VXORPDrm:
759 case X86::VXORPSrm:
760 case X86::VPXORrm:
761 OpSrc32 = X86 ::VPXORDZ128rm;
762 OpSrc64 = X86 ::VPXORQZ128rm;
763 break;
764 case X86::VXORPDYrm:
765 case X86::VXORPSYrm:
766 case X86::VPXORYrm:
767 OpSrc32 = X86 ::VPXORDZ256rm;
768 OpSrc64 = X86 ::VPXORQZ256rm;
769 break;
770 }
771 if (OpSrc32 || OpSrc64)
772 return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64);
773 }
774
775 return false;
776}
777
778bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
779 LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
783 SM = &ST->getSchedModel();
784
785 for (MachineBasicBlock &MBB : MF) {
786 for (MachineInstr &MI : MBB) {
787 if (processInstruction(MF, MBB, MI)) {
788 ++NumInstChanges;
790 }
791 }
792 }
793 LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
795}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
const TargetInstrInfo & TII
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
PowerPC TLS Dynamic Call Fixup
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static Constant * rebuildSplatCst(const Constant *C, unsigned, unsigned, unsigned SplatBitWidth)
Definition X86FixupVectorConstants.cpp:251
static std::optional< APInt > getSplatableConstant(const Constant *C, unsigned SplatBitWidth)
Definition X86FixupVectorConstants.cpp:157
static Constant * rebuildZExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
Definition X86FixupVectorConstants.cpp:333
static std::optional< APInt > extractConstantBits(const Constant *C)
Definition X86FixupVectorConstants.cpp:84
static Constant * getSplatValueAllowUndef(const ConstantVector *C)
Normally, we only allow poison in vector splats.
Definition X86FixupVectorConstants.cpp:69
static Constant * rebuildExtCst(const Constant *C, bool IsSExt, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
Definition X86FixupVectorConstants.cpp:299
static Constant * rebuildZeroUpperCst(const Constant *C, unsigned NumBits, unsigned, unsigned ScalarBitWidth)
Definition X86FixupVectorConstants.cpp:273
static Constant * rebuildSExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
Definition X86FixupVectorConstants.cpp:329
static Constant * rebuildConstant(LLVMContext &Ctx, Type *SclTy, const APInt &Bits, unsigned NumSclBits)
Definition X86FixupVectorConstants.cpp:210
Class for arbitrary precision integers.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
static LLVM_ABI Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of vector type with a float element type taken from argument...
Constant Vector Declarations.
This is an important base class in LLVM.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
FunctionPass class - This class is used to implement most global optimizations.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
This is an important class for using LLVM in a threaded context.
unsigned getSchedClass() const
Return the scheduling class for this instruction.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool is16bitFPTy() const
Return true if this is a 16-bit float type.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Value * getOperand(unsigned i) const
LLVM Value Representation.
const X86InstrInfo * getInstrInfo() const override
bool hasNoDomainDelayMov() const
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
This is an optimization pass for GlobalISel generic memory operations.
const X86FoldTableEntry * lookupBroadcastFoldTableBySize(unsigned MemOp, unsigned BroadcastBits)
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
FunctionPass * createX86FixupVectorConstants()
Return a pass that reduces the size of vector constant pool loads.
Definition X86FixupVectorConstants.cpp:62
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
static LLVM_ABI double getReciprocalThroughput(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)