getStereotypes - Get stereotypes applied on element of architecture model - MATLAB (original) (raw)
Get stereotypes applied on element of architecture model
Syntax
Description
[stereotypes](#mw%5F3520796a-a352-468b-b2b4-608e06337aad) = getStereotypes([element](#mw%5F14553daf-e788-43ff-8095-905db44ee088%5Fsep%5Fmw%5F6d55457b-71a8-4e02-8988-eb9cdd468568))
gets an array of fully qualified stereotype names that have been applied on an element of an architecture model.
Examples
Create a model with a component called Component
.
model = systemcomposer.createModel("archModel"); systemcomposer.openModel("archModel"); arch = get(model,"Architecture"); comp = addComponent(arch,"Component");
Create a profile with a stereotype and properties, open the Profile Editor, then apply the profile to the model.
profile = systemcomposer.profile.Profile.createProfile("LatencyProfile"); latencybase = profile.addStereotype("LatencyBase"); latencybase.addProperty("latency",Type="double"); latencybase.addProperty("dataRate",Type="double",DefaultValue="10"); systemcomposer.profile.editor(profile) model.applyProfile("LatencyProfile");
Apply the stereotype to the component and get the stereotypes on the component.
comp.applyStereotype("LatencyProfile.LatencyBase"); stereotypes = getStereotypes(comp)
stereotypes =
1×1 cell array
{'LatencyProfile.LatencyBase'}
Input Arguments
Output Arguments
List of stereotypes, returned as a cell array of character vectors in the form'<profile>.<stereotype>'
.
Data Types: char
More About
Term | Definition | Application | More Information |
---|---|---|---|
Architecture | A System Composer™ architecture represents a system of components and how they interface with each other structurally and behaviorally. | Different types of architectures describe different aspects of systems. You can use views to visualize a subset of components in an architecture. You can define parameters on the architecture level using the Parameter Editor. | Compose Architectures VisuallyAuthor Parameters in System Composer Using Parameter Editor |
Root | A root is at the top of an architecture hierarchy. A root architecture has a boundary defined by its architecture ports that surround the system of interest. | The root architecture has a system boundary surrounding your architecture model. You can add architecture ports that define interfaces across the boundary. | Compose Architectures Visually |
Model | A System Composer model is the file that contains architectural information, such as components, ports, connectors, interfaces, and behaviors. | Perform operations on a model including extracting root-level architecture, applying profiles, linking interface data dictionaries, or generating instances from model architecture. A System Composer model is stored as an SLX file. | Create Architecture Model with Interfaces and Requirement Links |
Component | A component is a replaceable part of a system that fulfills a clear function in the context of an architecture. A component defines an architectural element, such as a function, another system, hardware, software, or other conceptual entity. A component can also be a subsystem or subfunction. | Represented as a block, a component is a part of an architecture model that can be separated into reusable artifacts. Transfer information between components with port interfaces using the Interface Editor, and parameters using the Parameter Editor. | Compose Architectures Visually |
Port | A port is a node on a component or architecture that represents a point of interaction with its environment. A port permits the flow of information to and from other components or systems. | Component ports are interaction points on the component to other components. Architecture ports are ports on the boundary of the system, whether the boundary is within a component or the overall architecture model. The root architecture has a boundary defined by its ports. | Compose Architectures Visually |
Connector | Connectors are lines that provide connections between ports. Connectors describe how information flows between components or architectures. | A connector allows two components to interact without defining the nature of the interaction. Set an interface on a port to define how the components interact. | Compose Architectures Visually |
Term | Definition | Application | More Information |
---|---|---|---|
Data dictionary | A data dictionary is a repository of data relevant to your model. The Architectural Data section of a data dictionary stores shared definitions used in Simulink® and architecture model interfaces, such as port interfaces, data types, and system wide constants. For more information, see What Is a Data Dictionary? | You can save local interfaces on a System Composer model to the Architectural Data section of a Simulink data dictionary using the Interface Editor. In addition to the Interface Editor, you can also use the Architectural Data Editor to manage and modify interfaces and value types. | Manage Interfaces with Data DictionariesReference Data DictionariesStore Shared Data in Architectural Data Section |
Data interface | A data interface defines the kind of information that flows through a port. The same interface can be assigned to multiple ports. A data interface can be composite, meaning that it can include data elements that describe the properties of an interface signal. | Data interfaces represent the information that is shared through a connector and enters or exits a component through a port. Use the Interface Editor to create and manage data interfaces and data elements and store them in a data dictionary for reuse between models. | Create Architecture Model with Interfaces and Requirement LinksDefine Port Interfaces Between Components |
Data element | A data element describes a portion of an interface, such as a communication message, a calculated or measured parameter, or other decomposition of that interface. | Data interfaces are decomposed into data elements that can represent pins or wires in a connector or harness, messages transmitted across a bus, and data structures shared between components. | Create InterfacesAssign Interfaces to Ports |
Value type | A value type can be used as a port interface to define the atomic piece of data that flows through that port and has a top-level type, dimension, unit, complexity, minimum, maximum, and description. | You can also assign the type of data elements in data interfaces to value types. Add value types to data dictionaries using the Interface Editor so that you can reuse the value types as interfaces or data elements. | Create Value Types as Interfaces |
Owned interface | An owned interface is an interface that is local to a specific port and not shared in a data dictionary or the model dictionary. | Create an owned interface to represent a value type or data interface that is local to a port. | Define Owned Interfaces Local to Ports |
Adapter | An adapter connects two components with incompatible port interfaces by mapping between the two interfaces. An adapter can act as a unit delay, rate transition, or merge. You can also use an adapter for bus creation. Use the Adapter block to implement an adapter. | With an adapter, on the Interface Adapter dialog box, you can: create and edit mappings between input and output interfaces, apply an interface conversionUnitDelay to break an algebraic loop, apply an interface conversionRateTransition to reconcile different sample time rates for reference models, apply an interface conversion Merge to merge two or more message or signal lines, and when output interfaces are undefined, you can use input interfaces in bus creation mode to author owned output interfaces. | Interface AdapterAdapter |
Term | Definition | Application | More Information |
---|---|---|---|
Physical subsystem | A physical subsystem is a Simulink subsystem with Simscape™ connections. | A physical subsystem with Simscape connections uses a physical network approach suited for simulating systems with real physical components and represents a mathematical model. | Implement Component Behavior Using Simscape |
Physical port | A physical port represents a Simscape physical modeling connector port called a Connection Port (Simscape). | Use physical ports to connect components in an architecture model or to enable physical systems in a Simulink subsystem. | Define Physical Ports on Component |
Physical connector | A physical connector can represent a nondirectional conserving connection of a specific physical domain. Connectors can also represent physical signals. | Use physical connectors to connect physical components that represent features of a system to simulate mathematically. | Architecture Model with Simscape Behavior for a DC Motor |
Physical interface | A physical interface defines the kind of information that flows through a physical port. The same interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to a Simulink.ConnectionBus object that specifies a number of Simulink.ConnectionElement objects. | Use a physical interface to bundle physical elements to describe a physical model using at least one physical domain. | Specify Physical Interfaces on Ports |
Physical element | A physical element describes the decomposition of a physical interface. A physical element is equivalent to a Simulink.ConnectionElement object. | Define the Type of a physical element as a physical domain to enable use of that domain in a physical model. | Describe Component Behavior Using Simscape |
Version History
Introduced in R2019a
See Also
Tools
Blocks
Objects
- systemcomposer.profile.Profile | systemcomposer.profile.Stereotype | systemcomposer.profile.Property
Functions
- systemcomposer.profile.Profile.createProfile | systemcomposer.loadProfile | applyProfile | removeProfile | renameProfile | systemcomposer.profile.editor | systemcomposer.profile.Profile.find | systemcomposer.profile.Profile.load | save | open | close | systemcomposer.profile.Profile.closeAll | systemcomposer.profile.Stereotype.find | getDefaultStereotype | setDefaultStereotype | getDefaultElementStereotype | setDefaultElementStereotype | addStereotype | removeStereotype | getStereotype | applyStereotype | batchApplyStereotype | changeStereotype | removeStereotype | hasStereotype | addProperty | removeProperty | hasProperty | setProperty | getProperty | getPropertyValue | getEvaluatedPropertyValue | getStereotypeProperties | applyStereotypeOrder | getStereotypeNamesByOrder | increaseStereotypeOrder | decreaseStereotypeOrder