Aczel's anti-foundation axiom (original) (raw)
In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by Peter Aczel, as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exactly one set. In particular, according to this axiom, the graph consisting of a single vertex with a loop corresponds to a set that contains only itself as element, i.e. a Quine atom. A set theory obeying this axiom is necessarily a non-well-founded set theory.
Property | Value |
---|---|
dbo:abstract | In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by Peter Aczel, as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exactly one set. In particular, according to this axiom, the graph consisting of a single vertex with a loop corresponds to a set that contains only itself as element, i.e. a Quine atom. A set theory obeying this axiom is necessarily a non-well-founded set theory. (en) L’axiome d’anti-fondation (en anglais, anti-foundation axiom ou AFA) est un axiome alternatif à l'axiome de fondation de la théorie des ensembles qui permet des chaînes infinies descendantes pour la relation d'appartenance sur les ensembles. Il permet par exemple à un ensemble d'appartenir à lui-même ou à deux ensembles distincts d'appartenir l'un à l'autre.Proposé par Marco Forti et Furio Honsell en 1983, il a été popularisé par l'ouvrage Non-Well-Founded Sets de Peter Aczel, publié en 1988. C'est un axiome qui propose une extension de l'ontologie ensembliste. En effet dans un univers de la théorie ZF (sans axiome de fondation) il est toujours possible de définir une partie de celui-ci, l'univers de von Neumann, qui satisfait tous les axiomes de ZF et l'axiome de fondation, ce sont les ensembles bien fondés. L'axiome d'anti-fondation a pour conséquence que l'univers de von Neumann n'est pas l'univers tout entier : il existe des ensembles non-bien fondés (appelés parfois hyper-ensembles). Cette vision avait été anticipée par le mathématicien Dmitry Mirimanoff. (fr) |
dbo:wikiPageExternalLink | http://www.cs.bilkent.edu.tr/~akman/jour-papers/jiis/jiis.pdf http://www.goertzel.org/books/logic/contents.html http://www.goertzel.org/books/logic/chapter_seven.htm https://archive.org/details/nonwellfoundedse0000acze%7Caccess-date= |
dbo:wikiPageID | 8933657 (xsd:integer) |
dbo:wikiPageInterLanguageLink | dbpedia-de:Fundierungsaxiom |
dbo:wikiPageLength | 2668 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1108320038 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Zermelo–Fraenkel_set_theory dbr:Path_(graph_theory) dbc:Directed_graphs dbr:Accessible_pointed_graph dbr:Directed_graph dbr:Foundations_of_mathematics dbc:Axioms_of_set_theory dbr:Axiom dbr:Set_(mathematics) dbr:Vertex_(graph_theory) dbr:Von_Neumann_universe dbr:Non-well-founded_set_theory dbr:Axiom_of_foundation dbr:Quine_atom |
dbp:authorlink | Peter Aczel (en) |
dbp:first | Peter (en) |
dbp:last | Aczel (en) |
dbp:wikiPageUsesTemplate | dbt:Set_theory dbt:Cite_book dbt:Cite_journal dbt:Refimprove dbt:Reflist dbt:Short_description dbt:Harvs dbt:Mathematical_logic |
dbp:year | 1988 (xsd:integer) |
dct:subject | dbc:Directed_graphs dbc:Axioms_of_set_theory |
gold:hypernym | dbr:Axiom |
rdf:type | yago:WikicatAxiomsOfSetTheory yago:Abstraction100002137 yago:AuditoryCommunication107109019 yago:Communication100033020 yago:Graph107000195 yago:Maxim107152948 yago:Saying107151380 yago:Speech107109196 yago:VisualCommunication106873252 yago:WikicatDirectedGraphs |
rdfs:comment | In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by Peter Aczel, as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exactly one set. In particular, according to this axiom, the graph consisting of a single vertex with a loop corresponds to a set that contains only itself as element, i.e. a Quine atom. A set theory obeying this axiom is necessarily a non-well-founded set theory. (en) L’axiome d’anti-fondation (en anglais, anti-foundation axiom ou AFA) est un axiome alternatif à l'axiome de fondation de la théorie des ensembles qui permet des chaînes infinies descendantes pour la relation d'appartenance sur les ensembles. Il permet par exemple à un ensemble d'appartenir à lui-même ou à deux ensembles distincts d'appartenir l'un à l'autre.Proposé par Marco Forti et Furio Honsell en 1983, il a été popularisé par l'ouvrage Non-Well-Founded Sets de Peter Aczel, publié en 1988. (fr) |
rdfs:label | Aczel's anti-foundation axiom (en) Axiome d'anti-fondation (fr) |
owl:sameAs | freebase:Aczel's anti-foundation axiom yago-res:Aczel's anti-foundation axiom wikidata:Aczel's anti-foundation axiom dbpedia-fr:Aczel's anti-foundation axiom https://global.dbpedia.org/id/2fc44 |
prov:wasDerivedFrom | wikipedia-en:Aczel's_anti-foundation_axiom?oldid=1108320038&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Aczel's_anti-foundation_axiom |
is dbo:knownFor of | dbr:Peter_Aczel |
is dbo:wikiPageRedirects of | dbr:Anti-Foundation_Axiom dbr:Anti-foundation_axiom |
is dbo:wikiPageWikiLink of | dbr:Mostowski_collapse_lemma dbr:Peter_Aczel dbr:Anti-Foundation_Axiom dbr:Rooted_graph dbr:Glossary_of_set_theory dbr:Constructive_set_theory dbr:Aczél dbr:Hereditarily_finite_set dbr:Von_Neumann_universe dbr:Urelement dbr:Non-well-founded_set_theory dbr:Non-wellfounded_mereology dbr:Anti-foundation_axiom |
is dbp:knownFor of | dbr:Peter_Aczel |
is foaf:primaryTopic of | wikipedia-en:Aczel's_anti-foundation_axiom |