Basic hypergeometric series (original) (raw)

About DBpedia

数学において、q超幾何級数(qちょうきかきゅうすう、英: q-hypergeometric series, basic hypergeometric series)は、超幾何級数のq類似である。q超幾何級数は の形式で表される級数である。中でも が多く研究されている。但し、 であり、ここで はqポッホハマー記号である。なお、厳密にいうと、右辺の級数がq超幾何級数であり、左辺の記号は級数の和によって定義されるq超幾何関数を表すものである。

Property Value
dbo:abstract In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational function of n. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base. The basic hypergeometric series was first considered by Eduard Heine. It becomes the hypergeometric series in the limit when base . (en) En mathématiques, les séries hypergéométriques basiques de Heine, ou q-séries hypergéométriques, sont des généralisations q-analogues des , à leur tour étendues par les .Une série xn est appelée hypergéométrique si le rapport de deux termes successifs xn+1/xn est une fraction rationnelle de n. Si le rapport de deux termes successifs de est une fraction rationnelle en qn, alors la série est dite hypergéométrique basique, et le nombre q est appelé base. La série hypergéométriques basique 2ϕ1(qα,qβ;qγ;q,x) a d'abord été introduite par . On retrouve la série hypergéométrique F(α,β;γ;x) à la limite si la base q vaut 1. (fr) In matematica, le q-serie ipergeometriche, chiamate anche serie ipergeometriche basiche, sono generalizzazioni delle serie ipergeometriche ordinarie. Si definiscono comunemente due tipi di q-serie, le q-serie ipergeometriche unilaterali e le q-serie ipergeometriche bilaterali. La terminologia viene stabilita in analogia con quella delle serie ipergeometriche ordinarie. Una serie ordinaria viene detta serie ipergeometrica (ordinaria) se il rapporto fra termini successivi è una funzione razionale di n. Se invece il rapporto fra termini successivi è una funzione razionale di , la serie corrispondente viene detta q-serie ipergeometrica. Le q-serie ipergeometriche sono state analizzate per la prima volta da Eduard Heine nel XIX secolo, al fine di individuare caratteristiche comuni alle di Jacobi e alle funzioni ellittiche. (it) 数学において、q超幾何級数(qちょうきかきゅうすう、英: q-hypergeometric series, basic hypergeometric series)は、超幾何級数のq類似である。q超幾何級数は の形式で表される級数である。中でも が多く研究されている。但し、 であり、ここで はqポッホハマー記号である。なお、厳密にいうと、右辺の級数がq超幾何級数であり、左辺の記号は級数の和によって定義されるq超幾何関数を表すものである。 (ja) 基本超几何函数是广义超几何函数的q模拟。 (zh)
dbo:wikiPageExternalLink http://fa.its.tudelft.nl/~koekoek/askey/ https://web.archive.org/web/20050410204356/http:/www.labri.fr/Perso/~lovejoy/1psi1.pdf https://web.archive.org/web/20050530142121/http:/cfc.nankai.edu.cn/publications/04-accepted/Chen-Fu-04A/semi.pdf http://mathworld.wolfram.com/q-HypergeometricFunction.html https://www.ams.org/bookstore%3Ffn=20&arg1=survseries&ikey=SURV-27 http://resolver.sub.uni-goettingen.de/purl%3FGDZPPN002145391
dbo:wikiPageID 2233526 (xsd:integer)
dbo:wikiPageLength 11237 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1102044741 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbc:Hypergeometric_functions dbr:Victor_Kac dbr:Jacobi_triple_product dbr:Mathematics dbr:Elliptic_hypergeometric_series dbr:Q-analog dbr:Q-exponential dbr:G._N._Watson dbr:Harold_Exton dbr:Dixon's_identity dbr:Heinrich_August_Rothe dbr:American_Mathematical_Society dbr:Eduard_Heine dbr:Formal_power_series dbr:Barnes_integral dbr:Rational_function dbc:Q-analogs dbr:Ken_Ono dbr:Bilateral_hypergeometric_series dbr:Srinivasa_Ramanujan dbr:Rogers–Ramanujan_identities dbr:Sylvie_Corteel dbr:Q-shifted_factorial dbr:Generalized_hypergeometric_series
dbp:authorlink Eduard Heine (en)
dbp:first Eduard (en) G. E. (en)
dbp:id 17 (xsd:integer)
dbp:last Andrews (en) Heine (en)
dbp:title q-Hypergeometric and Related Functions (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_report dbt:Harvtxt dbt:ISBN dbt:Reflist dbt:Short_description dbt:Isbn dbt:Harvs dbt:Dlmf
dbp:year 1846 (xsd:integer)
dct:subject dbc:Hypergeometric_functions dbc:Q-analogs
rdf:type yago:WikicatSpecialFunctions yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Relation100031921 yago:WikicatHypergeometricFunctions
rdfs:comment 数学において、q超幾何級数(qちょうきかきゅうすう、英: q-hypergeometric series, basic hypergeometric series)は、超幾何級数のq類似である。q超幾何級数は の形式で表される級数である。中でも が多く研究されている。但し、 であり、ここで はqポッホハマー記号である。なお、厳密にいうと、右辺の級数がq超幾何級数であり、左辺の記号は級数の和によって定義されるq超幾何関数を表すものである。 (ja) 基本超几何函数是广义超几何函数的q模拟。 (zh) In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational function of n. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base. (en) In matematica, le q-serie ipergeometriche, chiamate anche serie ipergeometriche basiche, sono generalizzazioni delle serie ipergeometriche ordinarie. Si definiscono comunemente due tipi di q-serie, le q-serie ipergeometriche unilaterali e le q-serie ipergeometriche bilaterali. Le q-serie ipergeometriche sono state analizzate per la prima volta da Eduard Heine nel XIX secolo, al fine di individuare caratteristiche comuni alle di Jacobi e alle funzioni ellittiche. (it) En mathématiques, les séries hypergéométriques basiques de Heine, ou q-séries hypergéométriques, sont des généralisations q-analogues des , à leur tour étendues par les .Une série xn est appelée hypergéométrique si le rapport de deux termes successifs xn+1/xn est une fraction rationnelle de n. Si le rapport de deux termes successifs de est une fraction rationnelle en qn, alors la série est dite hypergéométrique basique, et le nombre q est appelé base. (fr)
rdfs:label Basic hypergeometric series (en) Série hypergéométrique basique (fr) Q-serie ipergeometrica (it) Q超幾何級数 (ja) 基本超几何函数 (zh)
owl:sameAs freebase:Basic hypergeometric series yago-res:Basic hypergeometric series wikidata:Basic hypergeometric series dbpedia-fr:Basic hypergeometric series dbpedia-it:Basic hypergeometric series dbpedia-ja:Basic hypergeometric series dbpedia-ro:Basic hypergeometric series dbpedia-zh:Basic hypergeometric series https://global.dbpedia.org/id/8vA3
prov:wasDerivedFrom wikipedia-en:Basic_hypergeometric_series?oldid=1102044741&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Basic_hypergeometric_series
is dbo:wikiPageRedirects of dbr:Basic_bilateral_hypergeometric_series dbr:Basic_hypergeometric_function dbr:Heine_function dbr:Heine_functions dbr:Hypergeometric_q-series dbr:Q-hypergeometric_function dbr:Q-hypergeometric_series
is dbo:wikiPageWikiLink of dbr:Hypergeometric_function dbr:List_of_q-analogs dbr:Elliptic_hypergeometric_series dbr:George_Gasper dbr:Q-Pochhammer_symbol dbr:Q-analog dbr:Q-exponential dbr:Generalized_hypergeometric_function dbr:Mourad_Ismail dbr:Wilfrid_Norman_Bailey dbr:Dixon's_identity dbr:Heinrich_August_Rothe dbr:Eduard_Heine dbr:Barnes_integral dbr:Askey–Gasper_inequality dbr:Nayandeep_Deka_Baruah dbr:Capacitance dbr:Series_(mathematics) dbr:F._H._Jackson dbr:List_of_things_named_after_Srinivasa_Ramanujan dbr:Nathan_Fine dbr:Rogers_polynomials dbr:Rogers–Ramanujan_identities dbr:Basic_bilateral_hypergeometric_series dbr:Basic_hypergeometric_function dbr:Heine_function dbr:Heine_functions dbr:Hypergeometric_q-series dbr:Q-hypergeometric_function dbr:Q-hypergeometric_series
is foaf:primaryTopic of wikipedia-en:Basic_hypergeometric_series