dbo:abstract |
Die Sätze von Basu sind drei Aussagen der mathematischen Statistik, die eine Verbindung zwischen der Suffizienz, der Vollständigkeit und der Verteilungsfreiheit herstellen. Sie wurden 1955 durch Debabrata Basu aufgestellt und bewiesen. (de) In statistics, Basu's theorem states that any boundedly complete minimal sufficient statistic is independent of any ancillary statistic. This is a 1955 result of Debabrata Basu. It is often used in statistics as a tool to prove independence of two statistics, by first demonstrating one is complete sufficient and the other is ancillary, then appealing to the theorem. An example of this is to show that the sample mean and sample variance of a normal distribution are independent statistics, which is done in the section below. This property (independence of sample mean and sample variance) characterizes normal distributions. (en) 在统计学中,巴苏定理(Basu's Theorem)指出任何有界完全的充分统计量与任何辅助统计量独立。 这是Debabrata Basu于1955年发现的结论。 (zh) |
dbo:wikiPageExternalLink |
http://www.lib.ncsu.edu/resolver/1840.4/229 |
dbo:wikiPageID |
7807871 (xsd:integer) |
dbo:wikiPageLength |
5994 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1088416827 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Debabrata_Basu dbc:Independence_(probability_theory) dbr:Characterization_(mathematics) dbr:Variance dbc:Articles_containing_proofs dbr:Ancillary_statistic dbr:Mean dbr:Statistics dbr:Completeness_(statistics) dbr:Measurable_space dbr:Normal_distribution dbr:Random_variable dbc:Theorems_in_statistics dbr:Cochran's_theorem dbr:Marginal_distribution dbr:Statistic dbr:The_American_Statistician dbr:Sankhya_(journal) dbr:Preimage dbr:Sufficient_statistic dbr:Statistical_independence dbr:Independent_and_identically-distributed_random_variables |
dbp:wikiPageUsesTemplate |
dbt:Cite_journal dbt:ISBN dbt:More_footnotes dbt:Reflist dbt:Statistics |
dct:subject |
dbc:Independence_(probability_theory) dbc:Articles_containing_proofs dbc:Theorems_in_statistics |
rdf:type |
yago:WikicatStatisticalTheorems yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment |
Die Sätze von Basu sind drei Aussagen der mathematischen Statistik, die eine Verbindung zwischen der Suffizienz, der Vollständigkeit und der Verteilungsfreiheit herstellen. Sie wurden 1955 durch Debabrata Basu aufgestellt und bewiesen. (de) In statistics, Basu's theorem states that any boundedly complete minimal sufficient statistic is independent of any ancillary statistic. This is a 1955 result of Debabrata Basu. It is often used in statistics as a tool to prove independence of two statistics, by first demonstrating one is complete sufficient and the other is ancillary, then appealing to the theorem. An example of this is to show that the sample mean and sample variance of a normal distribution are independent statistics, which is done in the section below. This property (independence of sample mean and sample variance) characterizes normal distributions. (en) 在统计学中,巴苏定理(Basu's Theorem)指出任何有界完全的充分统计量与任何辅助统计量独立。 这是Debabrata Basu于1955年发现的结论。 (zh) |
rdfs:label |
Sätze von Basu (de) Basu's theorem (en) 巴苏定理 (zh) |
owl:sameAs |
freebase:Basu's theorem yago-res:Basu's theorem wikidata:Basu's theorem dbpedia-de:Basu's theorem dbpedia-hu:Basu's theorem dbpedia-zh:Basu's theorem https://global.dbpedia.org/id/4x33b |
prov:wasDerivedFrom |
wikipedia-en:Basu's_theorem?oldid=1088416827&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Basu's_theorem |
is dbo:wikiPageRedirects of |
dbr:Basu_theorem dbr:Basu’s_theorem |
is dbo:wikiPageWikiLink of |
dbr:Robert_V._Hogg dbr:Debabrata_Basu dbr:List_of_Indian_inventions_and_discoveries dbr:Timeline_of_Indian_innovation dbr:Ancillary_statistic dbr:Errors_and_residuals dbr:Basu dbr:Completeness_(statistics) dbr:List_of_Bengalis dbr:Normal_distribution dbr:Lehmann–Scheffé_theorem dbr:Rao–Blackwell_theorem dbr:Cochran's_theorem dbr:List_of_statistics_articles dbr:List_of_theorems dbr:Sufficient_statistic dbr:Basu_theorem dbr:Basu’s_theorem |
is foaf:primaryTopic of |
wikipedia-en:Basu's_theorem |