Characterization (mathematics) (original) (raw)

About DBpedia

En langage mathématique, la caractérisation d'un objet X par une propriété P signifie que non seulement X possède la propriété P mais de plus X est le seul objet à posséder la propriété P. Il est également assez courant de rencontrer des affirmations telles que : « la propriété Q caractérise Y à isomorphisme près », qui indique que les objets vérifiant Q sont exactement les objets isomorphes à Y (à la place d'« isomorphisme » dans l'expression « à … près », une autre « relation d'équivalence entre objets » pourrait être spécifiée).

Property Value
dbo:abstract In mathematics, a characterization of an object is a set of conditions that, while different from the definition of the object, is logically equivalent to it. To say that "Property P characterizes object X" is to say that not only does X have property P, but that X is the only thing that has property P (i.e., P is a defining property of X). Similarly, a set of properties P is said to characterize X, when these properties distinguish X from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of X in terms of P include "P is necessary and sufficient for X", and "X holds if and only if P". It is also common to find statements such as "Property Q characterizes Y up to isomorphism". The first type of statement says in different words that the extension of P is a singleton set, while the second says that the extension of Q is a single equivalence class (for isomorphism, in the given example — depending on how up to is being used, some other equivalence relation might be involved). A reference on mathematical terminology notes that characteristic originates from the Greek term kharax, "a pointed stake": "From Greek kharax came kharakhter, an instrument used to mark or engrave an object. Once an object was marked, it became distinctive, so the character of something came to mean its distinctive nature. The Late Greek suffix -istikos converted the noun character into the adjective characteristic, which, in addition to maintaining its adjectival meaning, later became a noun as well." Just as in chemistry, the characteristic property of a material will serve to identify a sample, or in the study of materials, structures and properties will determine characterization, in mathematics there is a continual effort to express properties that will distinguish a desired feature in a theory or system. Characterization is not unique to mathematics, but since the science is abstract, much of the activity can be described as "characterization". For instance, in Mathematical Reviews, as of 2018, more than 24,000 articles contain the word in the article title, and 93,600 somewhere in the review. In an arbitrary context of objects and features, characterizations have been expressed via the heterogeneous relation aRb, meaning that object a has feature b. For example, b may mean abstract or concrete. The objects can be considered the extensions of the world, while the features are expression of the intensions. A continuing program of characterization of various objects leads to their categorization. (en) En langage mathématique, la caractérisation d'un objet X par une propriété P signifie que non seulement X possède la propriété P mais de plus X est le seul objet à posséder la propriété P. Il est également assez courant de rencontrer des affirmations telles que : « la propriété Q caractérise Y à isomorphisme près », qui indique que les objets vérifiant Q sont exactement les objets isomorphes à Y (à la place d'« isomorphisme » dans l'expression « à … près », une autre « relation d'équivalence entre objets » pourrait être spécifiée). (fr) 数学において、「性質 P が対象 X を特徴づける (characterize)」とは、X が性質 P を持っているだけでなく、性質 P を持っているものが X のみである ことを意味する。「性質 Q は Y を同型の違いを除いて特徴づける」というような主張も一般的である。 (ja) Stwierdzenie, że „własność P charakteryzuje obiekt X” oznacza nie tylko, że X ma własność P, ale że X jest jedynym obiektem, który ma własność P. Często spotyka się także zdania takie jak „własność Q charakteryzuje obiekt Y co do izomorfizmu”. Stwierdzenie pierwszego rodzaju mówi innymi słowy, że P jest zbiór jednoelementowy; drugie zaś, że rozszerzeniem Q jest jedna klasa abstrakcji (w tym przypadku izomorfizmu – jednak o rodzaj relacji równoważności zależy od wyrażenia znajdującego się za słowami co do). (pl)
dbo:wikiPageID 780886 (xsd:integer)
dbo:wikiPageLength 6066 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1094500345 (xsd:integer)
dbo:wikiPageWikiLink dbr:Probability_distribution dbr:Quadrilateral dbr:Bohr–Mollerup_theorem dbr:Character_(mathematics) dbr:Characteristic_property dbr:Characterization_(materials_science) dbr:Characterization_of_probability_distributions dbr:Intension dbc:Equivalence_(mathematics) dbr:Compact_space dbr:Mathematics dbr:Memorylessness dbr:Gamma_function dbr:Connected_space dbr:Equivalence_class dbr:Mathematical_Reviews dbr:Equivalence_relation dbr:Exponential_distribution dbr:Diffeomorphism dbr:Isomorphism dbr:Property_(philosophy) dbr:Abstract_and_concrete dbc:Mathematical_terminology dbr:Characteristic_(algebra) dbr:Characterizations_of_the_category_of_topological_spaces dbr:Characterizations_of_the_exponential_function dbr:Manifold dbr:Classification_theorem dbr:If_and_only_if dbr:Categorization dbr:Ratio dbr:Rational_number dbr:Rectangle dbr:Singleton_(mathematics) dbr:Up_to dbr:Euler_characteristic dbr:Extension_(semantics) dbr:Parallelogram dbr:Characteristic_(exponent_notation) dbr:Heterogeneous_relation dbr:Necessary_and_sufficient dbr:Decimal_expansion
dbp:wikiPageUsesTemplate dbt:Reflist dbt:Short_description
dct:subject dbc:Equivalence_(mathematics) dbc:Mathematical_terminology
gold:hypernym dbr:Thing
rdf:type dbo:Work
rdfs:comment En langage mathématique, la caractérisation d'un objet X par une propriété P signifie que non seulement X possède la propriété P mais de plus X est le seul objet à posséder la propriété P. Il est également assez courant de rencontrer des affirmations telles que : « la propriété Q caractérise Y à isomorphisme près », qui indique que les objets vérifiant Q sont exactement les objets isomorphes à Y (à la place d'« isomorphisme » dans l'expression « à … près », une autre « relation d'équivalence entre objets » pourrait être spécifiée). (fr) 数学において、「性質 P が対象 X を特徴づける (characterize)」とは、X が性質 P を持っているだけでなく、性質 P を持っているものが X のみである ことを意味する。「性質 Q は Y を同型の違いを除いて特徴づける」というような主張も一般的である。 (ja) Stwierdzenie, że „własność P charakteryzuje obiekt X” oznacza nie tylko, że X ma własność P, ale że X jest jedynym obiektem, który ma własność P. Często spotyka się także zdania takie jak „własność Q charakteryzuje obiekt Y co do izomorfizmu”. Stwierdzenie pierwszego rodzaju mówi innymi słowy, że P jest zbiór jednoelementowy; drugie zaś, że rozszerzeniem Q jest jedna klasa abstrakcji (w tym przypadku izomorfizmu – jednak o rodzaj relacji równoważności zależy od wyrażenia znajdującego się za słowami co do). (pl) In mathematics, a characterization of an object is a set of conditions that, while different from the definition of the object, is logically equivalent to it. To say that "Property P characterizes object X" is to say that not only does X have property P, but that X is the only thing that has property P (i.e., P is a defining property of X). Similarly, a set of properties P is said to characterize X, when these properties distinguish X from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of X in terms of P include "P is necessary and sufficient for X", and "X holds if and only if P". (en)
rdfs:label Characterization (mathematics) (en) Caractérisation (mathématiques) (fr) 特徴づけ (数学) (ja) Charakteryzacja (matematyka) (pl)
owl:sameAs freebase:Characterization (mathematics) wikidata:Characterization (mathematics) dbpedia-fa:Characterization (mathematics) dbpedia-fr:Characterization (mathematics) dbpedia-hu:Characterization (mathematics) dbpedia-ja:Characterization (mathematics) dbpedia-pl:Characterization (mathematics) https://global.dbpedia.org/id/2iqne
prov:wasDerivedFrom wikipedia-en:Characterization_(mathematics)?oldid=1094500345&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Characterization_(mathematics)
is dbo:wikiPageDisambiguates of dbr:Character dbr:Characterization_(disambiguation)
is dbo:wikiPageRedirects of dbr:Characterisation_(mathematics) dbr:Characterisation_theorem dbr:Characterisation_theorems dbr:Characterization_theorem dbr:Characterization_theorems
is dbo:wikiPageWikiLink of dbr:Menger's_theorem dbr:Bohr–Mollerup_theorem dbr:Approximation_theory dbr:Permutation_matrix dbr:Character_(mathematics) dbr:Characterization_of_probability_distributions dbr:Curtis–Hedlund–Lyndon_theorem dbr:Decomposition_of_a_module dbr:Johannes_Mollerup dbr:Nowhere_commutative_semigroup dbr:Proportional_rule_(bankruptcy) dbr:Memorylessness dbr:Loximuthal_projection dbr:Morera's_theorem dbr:Entropy_(information_theory) dbr:Conjecture dbr:Constrained_equal_awards dbr:Constrained_equal_losses dbr:Reversible_diffusion dbr:Andrew_M._Gleason dbr:Basu's_theorem dbr:Darmois–Skitovich_theorem dbr:Wielandt_theorem dbr:Wishart_distribution dbr:Distance_geometry dbr:Affine_space dbr:Exponential_function dbr:Finite-state_transducer dbr:Forbidden_graph_characterization dbr:Diagonal_morphism dbr:Florian_Pop dbr:Kac–Bernstein_theorem dbr:Presupposition dbr:Characterisation_(mathematics) dbr:Characterizations_of_the_exponential_function dbr:Heyde_theorem dbr:Poincaré_conjecture dbr:Categorization dbr:Maxwell's_theorem dbr:Utilitarian_cake-cutting dbr:Extension_(semantics) dbr:Character dbr:Characterization_(disambiguation) dbr:Polyhedral_graph dbr:Outline_of_discrete_mathematics dbr:Characterisation_theorem dbr:Characterisation_theorems dbr:Characterization_theorem dbr:Characterization_theorems
is foaf:primaryTopic of wikipedia-en:Characterization_(mathematics)