dbo:abstract |
In mathematics, the bounded inverse theorem (or inverse mapping theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. (en) 数学の分野における有界逆写像定理(ゆうかいぎゃくしゃぞうていり、英語: Bounded inverse theorem)は、バナッハ空間上の有界線形作用素の理論における一つの結果で、あるバナッハ空間から別のバナッハ空間への全単射な有界線形作用素 T には有界な逆 T−1 が存在する、ということを述べた定理である。開写像定理や閉グラフ定理と同値である。 ここで考える空間はバナッハ空間でなければならない。反例として、ゼロでない成分が有限個であるような数列 x : N → R からなる空間 X を考える(そのノルムは上限ノルムで与えられるものとする)。作用素 T : X → X を で定義すると、これは有界、線形、可逆であるが T−1 は非有界となる。しかしこれは有界逆写像定理とは矛盾しない。なぜならば X は完備でなく、したがってバナッハ空間ではないからである。実際に完備でないことを確かめるために、 によって与えられる数列 x(n) ∈ X からなる列を考える。それは n → ∞ に対して数列 へと収束するが、この(無限個の)全ての成分がゼロでないため、これは X には含まれない。したがって X は完備ではない。 X の完備化は、ゼロに収束するような全ての数列からなる空間 である(この空間は、全ての有界数列からなるようなℓp空間 ℓ∞(N) の(閉)部分空間である)。この場合、作用素 T が全射でなく、したがって全単射ではない。このことを確かめるための簡単な例を挙げる。数列 は の元であるが、 の値域には含まれない。したがって T は全射ではない。 (ja) Теорема Банаха об обратном операторе — один из трёх основных принципов «банаховой» теории линейных операторов (два других — теорема Хана — Банаха и принцип равномерной ограниченности). (ru) |
dbo:wikiPageExternalLink |
https://archive.org/details/introductiontopa00roge_558 https://archive.org/details/introductiontopa00roge_558/page/n370 |
dbo:wikiPageID |
12365444 (xsd:integer) |
dbo:wikiPageLength |
3754 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1119699536 (xsd:integer) |
dbo:wikiPageWikiLink |
dbc:Operator_theory dbr:Complete_TVS dbc:Theorems_in_functional_analysis dbr:Mathematics dbr:Closed_graph_theorem dbr:Lp_space dbr:Banach_space dbr:Topological_vector_space dbr:Logical_equivalence dbr:Inverse_function dbr:Baire_space dbr:Bijection dbr:Supremum_norm dbr:Homeomorphism dbr:Metrizable_TVS dbr:Open_mapping_theorem_(functional_analysis) dbr:Sequence dbr:Completeness_(topology) dbr:Bounded_linear_operator |
dbp:mathStatement |
If is a continuous linear bijection from a complete pseudometrizable topological vector space onto a Hausdorff TVS that is a Baire space, then is a homeomorphism . (en) |
dbp:name |
Theorem (en) |
dbp:wikiPageUsesTemplate |
dbt:Annotated_link dbt:Cite_book dbt:Math dbt:Reflist dbt:Sfn dbt:Functional_analysis dbt:Köthe_Topological_Vector_Spaces_I dbt:Math_theorem dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Topological_vector_spaces dbt:Wilansky_Modern_Methods_in_Topological_Vector_Spaces |
dct:subject |
dbc:Operator_theory dbc:Theorems_in_functional_analysis |
rdf:type |
yago:WikicatTheoremsInFunctionalAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment |
In mathematics, the bounded inverse theorem (or inverse mapping theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem. (en) Теорема Банаха об обратном операторе — один из трёх основных принципов «банаховой» теории линейных операторов (два других — теорема Хана — Банаха и принцип равномерной ограниченности). (ru) 数学の分野における有界逆写像定理(ゆうかいぎゃくしゃぞうていり、英語: Bounded inverse theorem)は、バナッハ空間上の有界線形作用素の理論における一つの結果で、あるバナッハ空間から別のバナッハ空間への全単射な有界線形作用素 T には有界な逆 T−1 が存在する、ということを述べた定理である。開写像定理や閉グラフ定理と同値である。 ここで考える空間はバナッハ空間でなければならない。反例として、ゼロでない成分が有限個であるような数列 x : N → R からなる空間 X を考える(そのノルムは上限ノルムで与えられるものとする)。作用素 T : X → X を で定義すると、これは有界、線形、可逆であるが T−1 は非有界となる。しかしこれは有界逆写像定理とは矛盾しない。なぜならば X は完備でなく、したがってバナッハ空間ではないからである。実際に完備でないことを確かめるために、 によって与えられる数列 x(n) ∈ X からなる列を考える。それは n → ∞ に対して数列 へと収束するが、この(無限個の)全ての成分がゼロでないため、これは X には含まれない。したがって X は完備ではない。 は の元であるが、 の値域には含まれない。したがって T は全射ではない。 (ja) |
rdfs:label |
Bounded inverse theorem (en) 有界逆写像定理 (ja) Теорема Банаха об обратном операторе (ru) |
owl:sameAs |
freebase:Bounded inverse theorem yago-res:Bounded inverse theorem wikidata:Bounded inverse theorem dbpedia-ja:Bounded inverse theorem dbpedia-ru:Bounded inverse theorem https://global.dbpedia.org/id/4abvV |
prov:wasDerivedFrom |
wikipedia-en:Bounded_inverse_theorem?oldid=1119699536&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Bounded_inverse_theorem |
is dbo:wikiPageWikiLink of |
dbr:Closed_graph_theorem_(functional_analysis) dbr:Spectrum_(functional_analysis) dbr:Hilbert_space dbr:Open_mapping_theorem_(functional_analysis) dbr:List_of_theorems dbr:Inverse_mapping_theorem |
is foaf:primaryTopic of |
wikipedia-en:Bounded_inverse_theorem |