Calkin algebra (original) (raw)
In functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of B(H), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space H, by the ideal K(H) of compact operators. Here the addition in B(H) is addition of operators and the multiplication in B(H) is composition of operators; it is easy to verify that these operations make B(H) into a ring. When scalar multiplication is also included, B(H) becomes in fact an algebra over the same field over which H is a Hilbert space.
Property | Value |
---|---|
dbo:abstract | In functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of B(H), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space H, by the ideal K(H) of compact operators. Here the addition in B(H) is addition of operators and the multiplication in B(H) is composition of operators; it is easy to verify that these operations make B(H) into a ring. When scalar multiplication is also included, B(H) becomes in fact an algebra over the same field over which H is a Hilbert space. (en) In der Mathematik ist die Calkin-Algebra (nach John Williams Calkin) eine spezielle Banachalgebra, die einem Banachraum zugeordnet ist. In der Calkin-Algebra kann man Eigenschaften stetiger linearer Operatoren vereinfacht betrachten, indem Operatoren, deren Differenz kompakt ist, identifiziert werden. So kommt man zu Klassifikationssätzen für normale Operatoren modulo kompakter Operatoren. (de) En analyse fonctionnelle — une branche des mathématiques — l'algèbre de Calkin d'un espace de Banach E est le quotient de l'algèbre de Banach B(E) des opérateurs bornés sur E par l'idéal fermé K(E) des opérateurs compacts. C'est donc encore une algèbre de Banach, pour la norme quotient. Lorsque l'espace E n'est pas précisé, il s'agit de l'espace de Hilbert H séparable et de dimension infinie. Son algèbre de Calkin permet de classifier entre autres les opérateurs normaux sur H, modulo les opérateurs compacts. (fr) |
dbo:wikiPageID | 945565 (xsd:integer) |
dbo:wikiPageLength | 4107 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1057958094 (xsd:integer) |
dbo:wikiPageWikiLink | dbc:Operator_theory dbr:Separable_space dbr:Operator_K-theory dbr:Short_exact_sequence dbr:Compact_operator_on_Hilbert_space dbr:Functional_analysis dbr:Ideal_(ring_theory) dbr:Banach_space dbc:K-theory dbr:Linear_map dbr:John_Williams_Calkin dbr:Corona_algebra dbr:Quotient_space_(linear_algebra) dbr:Hilbert_space dbr:Ring_(algebra) dbc:C*-algebras dbr:ZFC dbr:C*-algebra dbr:Fredholm_operator dbr:Gelfand-Naimark-Segal_construction dbr:Simple_algebra dbr:Bott_periodicity dbr:Bounded_linear_operator |
dbp:wikiPageUsesTemplate | dbt:Citation_needed |
dct:subject | dbc:Operator_theory dbc:K-theory dbc:C*-algebras |
gold:hypernym | dbr:Quotient |
rdf:type | yago:Abstraction100002137 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment | In functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of B(H), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space H, by the ideal K(H) of compact operators. Here the addition in B(H) is addition of operators and the multiplication in B(H) is composition of operators; it is easy to verify that these operations make B(H) into a ring. When scalar multiplication is also included, B(H) becomes in fact an algebra over the same field over which H is a Hilbert space. (en) In der Mathematik ist die Calkin-Algebra (nach John Williams Calkin) eine spezielle Banachalgebra, die einem Banachraum zugeordnet ist. In der Calkin-Algebra kann man Eigenschaften stetiger linearer Operatoren vereinfacht betrachten, indem Operatoren, deren Differenz kompakt ist, identifiziert werden. So kommt man zu Klassifikationssätzen für normale Operatoren modulo kompakter Operatoren. (de) En analyse fonctionnelle — une branche des mathématiques — l'algèbre de Calkin d'un espace de Banach E est le quotient de l'algèbre de Banach B(E) des opérateurs bornés sur E par l'idéal fermé K(E) des opérateurs compacts. C'est donc encore une algèbre de Banach, pour la norme quotient. Lorsque l'espace E n'est pas précisé, il s'agit de l'espace de Hilbert H séparable et de dimension infinie. Son algèbre de Calkin permet de classifier entre autres les opérateurs normaux sur H, modulo les opérateurs compacts. (fr) |
rdfs:label | Calkin-Algebra (de) Calkin algebra (en) Algèbre de Calkin (fr) |
owl:sameAs | freebase:Calkin algebra yago-res:Calkin algebra wikidata:Calkin algebra dbpedia-de:Calkin algebra dbpedia-fr:Calkin algebra https://global.dbpedia.org/id/79qh |
prov:wasDerivedFrom | wikipedia-en:Calkin_algebra?oldid=1057958094&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Calkin_algebra |
is dbo:wikiPageDisambiguates of | dbr:Calkin_(disambiguation) |
is dbo:wikiPageWikiLink of | dbr:List_of_functional_analysis_topics dbr:Multiplier_algebra dbr:Calkin_(disambiguation) dbr:Index_group dbr:Operator_K-theory dbr:Compact_operator dbr:Compact_operator_on_Hilbert_space dbr:Glossary_of_functional_analysis dbr:John_Williams_Calkin dbr:Atkinson's_theorem dbr:C*-algebra dbr:List_of_statements_independent_of_ZFC |
is foaf:primaryTopic of | wikipedia-en:Calkin_algebra |