Multiplier algebra (original) (raw)

Property Value
dbo:abstract Die Multiplikatorenalgebra, in Anlehnung an die englische Bezeichnung auch Multiplier-Algebra genannt, ist ein Konzept aus der mathematischen Theorie der C*-Algebren. Es handelt sich um die maximale Einbettung einer C*-Algebra als wesentliches zweiseitiges Ideal in eine C*-Algebra mit Einselement. (de) In mathematics, the multiplier algebra, denoted by M(A), of a C*-algebra A is a unital C*-algebra that is the largest unital C*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone–Čech compactification. Multiplier algebras were introduced by . For example, if A is the C*-algebra of compact operators on a separable Hilbert space, M(A) is B(H), the C*-algebra of all bounded operators on H. (en)
dbo:wikiPageExternalLink https://web.archive.org/web/20200220172805/http:/pdfs.semanticscholar.org/6fc8/e18b8f80e808b12cf2a446024d36dcb30555.pdf http://pdfs.semanticscholar.org/6fc8/e18b8f80e808b12cf2a446024d36dcb30555.pdf
dbo:wikiPageID 13542720 (xsd:integer)
dbo:wikiPageLength 5945 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1085849177 (xsd:integer)
dbo:wikiPageWikiLink dbr:Topologies_on_the_set_of_operators_on_a_Hilbert_space dbr:Mathematics dbr:Bounded_operator dbr:Corona_set dbr:Locally_compact dbr:Calkin_algebra dbr:Stone–Čech_compactification dbr:Compact_operator_on_Hilbert_space dbr:Ideal_(ring_theory) dbr:Idealizer dbr:Spectrum_of_a_C*-algebra dbr:Noncommutative_topology dbr:Hausdorff_space dbr:Hilbert_C*-module dbr:Isomorphism dbc:C*-algebras dbr:C*-algebra dbr:Seminorm dbr:Gelfand-Naimark_theorem dbr:Universal_property dbr:Vanish_at_infinity dbr:Transactions_of_the_American_Mathematical_Society
dbp:first Gert K. (en)
dbp:id m/m130260 (en)
dbp:last Pedersen (en)
dbp:title Multipliers of C*-algebras (en)
dbp:wikiPageUsesTemplate dbt:Citation dbt:Harvtxt dbt:Eom
dct:subject dbc:C*-algebras
gold:hypernym dbr:Algebra
rdfs:comment Die Multiplikatorenalgebra, in Anlehnung an die englische Bezeichnung auch Multiplier-Algebra genannt, ist ein Konzept aus der mathematischen Theorie der C*-Algebren. Es handelt sich um die maximale Einbettung einer C*-Algebra als wesentliches zweiseitiges Ideal in eine C*-Algebra mit Einselement. (de) In mathematics, the multiplier algebra, denoted by M(A), of a C*-algebra A is a unital C*-algebra that is the largest unital C*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone–Čech compactification. Multiplier algebras were introduced by . For example, if A is the C*-algebra of compact operators on a separable Hilbert space, M(A) is B(H), the C*-algebra of all bounded operators on H. (en)
rdfs:label Multiplikatorenalgebra (de) Multiplier algebra (en)
owl:sameAs freebase:Multiplier algebra wikidata:Multiplier algebra dbpedia-de:Multiplier algebra https://global.dbpedia.org/id/4sExE
prov:wasDerivedFrom wikipedia-en:Multiplier_algebra?oldid=1085849177&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Multiplier_algebra
is dbo:wikiPageDisambiguates of dbr:Multiplier
is dbo:wikiPageRedirects of dbr:Corona_algebra
is dbo:wikiPageWikiLink of dbr:Multiplier dbr:Bochner's_theorem dbr:Stone–Čech_compactification dbr:Hopf_algebra dbr:Idealizer dbr:Noncommutative_topology dbr:Corona_algebra dbr:Hereditary_C*-subalgebra
is foaf:primaryTopic of wikipedia-en:Multiplier_algebra