dbo:abstract |
Die Multiplikatorenalgebra, in Anlehnung an die englische Bezeichnung auch Multiplier-Algebra genannt, ist ein Konzept aus der mathematischen Theorie der C*-Algebren. Es handelt sich um die maximale Einbettung einer C*-Algebra als wesentliches zweiseitiges Ideal in eine C*-Algebra mit Einselement. (de) In mathematics, the multiplier algebra, denoted by M(A), of a C*-algebra A is a unital C*-algebra that is the largest unital C*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone–Čech compactification. Multiplier algebras were introduced by . For example, if A is the C*-algebra of compact operators on a separable Hilbert space, M(A) is B(H), the C*-algebra of all bounded operators on H. (en) |
dbo:wikiPageExternalLink |
https://web.archive.org/web/20200220172805/http:/pdfs.semanticscholar.org/6fc8/e18b8f80e808b12cf2a446024d36dcb30555.pdf http://pdfs.semanticscholar.org/6fc8/e18b8f80e808b12cf2a446024d36dcb30555.pdf |
dbo:wikiPageID |
13542720 (xsd:integer) |
dbo:wikiPageLength |
5945 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1085849177 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Topologies_on_the_set_of_operators_on_a_Hilbert_space dbr:Mathematics dbr:Bounded_operator dbr:Corona_set dbr:Locally_compact dbr:Calkin_algebra dbr:Stone–Čech_compactification dbr:Compact_operator_on_Hilbert_space dbr:Ideal_(ring_theory) dbr:Idealizer dbr:Spectrum_of_a_C*-algebra dbr:Noncommutative_topology dbr:Hausdorff_space dbr:Hilbert_C*-module dbr:Isomorphism dbc:C*-algebras dbr:C*-algebra dbr:Seminorm dbr:Gelfand-Naimark_theorem dbr:Universal_property dbr:Vanish_at_infinity dbr:Transactions_of_the_American_Mathematical_Society |
dbp:first |
Gert K. (en) |
dbp:id |
m/m130260 (en) |
dbp:last |
Pedersen (en) |
dbp:title |
Multipliers of C*-algebras (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harvtxt dbt:Eom |
dct:subject |
dbc:C*-algebras |
gold:hypernym |
dbr:Algebra |
rdfs:comment |
Die Multiplikatorenalgebra, in Anlehnung an die englische Bezeichnung auch Multiplier-Algebra genannt, ist ein Konzept aus der mathematischen Theorie der C*-Algebren. Es handelt sich um die maximale Einbettung einer C*-Algebra als wesentliches zweiseitiges Ideal in eine C*-Algebra mit Einselement. (de) In mathematics, the multiplier algebra, denoted by M(A), of a C*-algebra A is a unital C*-algebra that is the largest unital C*-algebra that contains A as an ideal in a "non-degenerate" way. It is the noncommutative generalization of Stone–Čech compactification. Multiplier algebras were introduced by . For example, if A is the C*-algebra of compact operators on a separable Hilbert space, M(A) is B(H), the C*-algebra of all bounded operators on H. (en) |
rdfs:label |
Multiplikatorenalgebra (de) Multiplier algebra (en) |
owl:sameAs |
freebase:Multiplier algebra wikidata:Multiplier algebra dbpedia-de:Multiplier algebra https://global.dbpedia.org/id/4sExE |
prov:wasDerivedFrom |
wikipedia-en:Multiplier_algebra?oldid=1085849177&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Multiplier_algebra |
is dbo:wikiPageDisambiguates of |
dbr:Multiplier |
is dbo:wikiPageRedirects of |
dbr:Corona_algebra |
is dbo:wikiPageWikiLink of |
dbr:Multiplier dbr:Bochner's_theorem dbr:Stone–Čech_compactification dbr:Hopf_algebra dbr:Idealizer dbr:Noncommutative_topology dbr:Corona_algebra dbr:Hereditary_C*-subalgebra |
is foaf:primaryTopic of |
wikipedia-en:Multiplier_algebra |