Dividing a circle into areas (original) (raw)

About DBpedia

In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method. The greatest possible number of regions, rG = (n4) + (n2) + 1, giving the sequence 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, ... (OEIS: ). Though the first five terms match the geometric progression 2n − 1, it diverges at n = 6, showing the risk of generalising from only a few observations.

thumbnail

Property Value
dbo:abstract In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method. The greatest possible number of regions, rG = (n4) + (n2) + 1, giving the sequence 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, ... (OEIS: ). Though the first five terms match the geometric progression 2n − 1, it diverges at n = 6, showing the risk of generalising from only a few observations. (en)
dbo:thumbnail wiki-commons:Special:FilePath/Circle_division_by_chords.svg?width=300
dbo:wikiPageExternalLink http://www.arbelos.co.uk/Papers/Chords-regions.pdf https://web.archive.org/web/20110904063810/http:/www.arbelos.co.uk/Papers/Chords-regions.pdf
dbo:wikiPageID 399730 (xsd:integer)
dbo:wikiPageLength 12102 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122057826 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quadrilateral dbc:Area dbr:Richard_K._Guy dbr:163_(number) dbr:Connectivity_(graph_theory) dbr:Mathematical_induction dbr:Geometric_progression dbr:Geometry dbr:Bernoulli's_triangle dbr:Polygon dbc:Circles dbc:Combinatorics dbr:Cyclic_quadrilateral dbr:Pascal's_triangle dbr:Diagonal dbr:John_Horton_Conway dbr:Lazy_caterer's_sequence dbr:Planar_graph dbr:Sphere dbr:Circular_arc dbr:Euler_characteristic dbr:In_general_position dbr:D._Jaud dbr:File:Circle_division_by_chords.svg dbr:File:DividingACircleIntoAreas-Box.png dbr:File:DividingACircleIntoAreas.svg
dbp:b 2 (xsd:integer) 4 (xsd:integer)
dbp:date 2011-09-04 (xsd:date)
dbp:p n (en)
dbp:title Circle Division by Chords (en)
dbp:url https://web.archive.org/web/20110904063810/http:/www.arbelos.co.uk/Papers/Chords-regions.pdf
dbp:urlname CircleDivisionbyChords (en)
dbp:wikiPageUsesTemplate dbt:Figure_space dbt:Mathworld dbt:Webarchive dbt:Oeis dbt:Su dbt:Diagonal_split_header dbt:Bernoulli_triangle_columns.svg
dct:subject dbc:Area dbc:Circles dbc:Combinatorics
rdf:type yago:WikicatCircles yago:Abstraction100002137 yago:Attribute100024264 yago:Circle113873502 yago:ConicSection113872975 yago:Ellipse113878306 yago:Figure113862780 yago:PlaneFigure113863186 yago:Shape100027807
rdfs:comment In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method. The greatest possible number of regions, rG = (n4) + (n2) + 1, giving the sequence 1, 2, 4, 8, 16, 31, 57, 99, 163, 256, ... (OEIS: ). Though the first five terms match the geometric progression 2n − 1, it diverges at n = 6, showing the risk of generalising from only a few observations. (en)
rdfs:label Dividing a circle into areas (en)
owl:sameAs freebase:Dividing a circle into areas yago-res:Dividing a circle into areas wikidata:Dividing a circle into areas https://global.dbpedia.org/id/4jAKD
prov:wasDerivedFrom wikipedia-en:Dividing_a_circle_into_areas?oldid=1122057826&ns=0
foaf:depiction wiki-commons:Special:FilePath/Circle_division_by_chords.svg wiki-commons:Special:FilePath/DividingACircleIntoAreas-Box.png wiki-commons:Special:FilePath/DividingACircleIntoAreas.svg
foaf:isPrimaryTopicOf wikipedia-en:Dividing_a_circle_into_areas
is dbo:wikiPageRedirects of dbr:Moser's_circle_problem dbr:Circle_division_by_chords dbr:Circle_points_segments_proof
is dbo:wikiPageWikiLink of dbr:List_of_circle_topics dbr:Moser's_circle_problem dbr:Bernoulli's_triangle dbr:Leo_Moser dbr:Lazy_caterer's_sequence dbr:Circle_division_by_chords dbr:Circle_points_segments_proof
is foaf:primaryTopic of wikipedia-en:Dividing_a_circle_into_areas