Content (measure theory) (original) (raw)
Ein Inhalt ist in der Maßtheorie eine spezielle Mengenfunktion, die für gewisse Mengensysteme definiert wird und dazu dient, den intuitiven Volumenbegriff zu abstrahieren und zu verallgemeinern.
Property | Value |
---|---|
dbo:abstract | In mathematics, a content is a set function that is like a measure, but a content must only be finitely additive, whereas a measure must be countably additive. A content is a real function defined on a collection of subsets such that 1. * 2. * 3. * In many important applications the is chosen to be a Ring of sets or to be at least a Semiring of sets in which case some additional properties can be deduced which are described below. For this reason some authors prefer to define contents only for the case of semirings or even rings. If a content is additionally σ-additive it is called a pre-measure and if furthermore is a σ-algebra, the content is called a measure. Therefore every (real-valued) measure is a content, but not vice versa. Contents give a good notion of integrating bounded functions on a space but can behave badly when integrating unbounded functions, while measures give a good notion of integrating unbounded functions. (en) Ein Inhalt ist in der Maßtheorie eine spezielle Mengenfunktion, die für gewisse Mengensysteme definiert wird und dazu dient, den intuitiven Volumenbegriff zu abstrahieren und zu verallgemeinern. (de) En théorie de la mesure, une mesure simplement additive est une version faible d'une mesure : au lieu d'être sigma-additive comme la mesure classique, elle est additive seulement pour l'union d'un nombre fini d'ensembles disjoints. Elle correspond davantage à l'idée intuitive que l'on se fait de la notion de mesure de distance parcourue, de mesure de surface, de mesure de volume ou de mesure de poids. En théorie de l'intégration, la notion de mesure simplement additive conduit à la notion d'intégrale de Riemann, alors que la notion de mesure sigma-additive conduit à la notion d'intégrale de Lebesgue. (fr) 数学における有限加法的測度(ゆうげんかほうてきそくど、英: finitely additive measure)または容積(ようせき、英: content, 独: Inhalt)とは、測度と同様に与えられた集合の部分集合に対して 非負の拡大実数を割り当てる集合函数である。 代表的な有限加法的測度としてジョルダン測度がある。完全加法族上の測度は「可算加法的」測度である(任意の完全加法族は有限加法族であり、任意の測度は有限加法的測度である)。有限加法的測度は、ある条件下で一意的な測度への拡張が存在する(E.ホップの拡張定理)。 (ja) Miara skończenie addytywna jest przykładem funkcji addytywnej zbioru. Wbrew nazwie, nie jest to miara w ścisłym sensie. (pl) |
dbo:wikiPageID | 9999200 (xsd:integer) |
dbo:wikiPageLength | 10536 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1106927160 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Ring_of_sets dbr:Sigma_algebra dbr:Pre-measure dbr:Mathematics dbr:Measure_(mathematics) dbr:Real_function dbr:Locally_compact dbr:Sigma_additivity dbr:Haar_measure dbr:Hausdorff_space dbr:Lebesgue_measure dbr:Locally_compact_group dbr:Outer_measure dbr:Carathéodory's_extension_theorem dbr:Hahn–Banach_theorem dbc:Families_of_sets dbc:Measure_theory dbr:Inclusion–exclusion_principle dbr:Semiring |
dbp:wikiPageUsesTemplate | dbt:Annotated_link dbt:Citation dbt:Reflist dbt:Measure_theory |
dct:subject | dbc:Families_of_sets dbc:Measure_theory |
rdf:type | yago:WikicatSetFamilies yago:Abstraction100002137 yago:Family108078020 yago:Group100031264 yago:Organization108008335 yago:YagoLegalActor yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:SocialGroup107950920 yago:Unit108189659 |
rdfs:comment | Ein Inhalt ist in der Maßtheorie eine spezielle Mengenfunktion, die für gewisse Mengensysteme definiert wird und dazu dient, den intuitiven Volumenbegriff zu abstrahieren und zu verallgemeinern. (de) 数学における有限加法的測度(ゆうげんかほうてきそくど、英: finitely additive measure)または容積(ようせき、英: content, 独: Inhalt)とは、測度と同様に与えられた集合の部分集合に対して 非負の拡大実数を割り当てる集合函数である。 代表的な有限加法的測度としてジョルダン測度がある。完全加法族上の測度は「可算加法的」測度である(任意の完全加法族は有限加法族であり、任意の測度は有限加法的測度である)。有限加法的測度は、ある条件下で一意的な測度への拡張が存在する(E.ホップの拡張定理)。 (ja) Miara skończenie addytywna jest przykładem funkcji addytywnej zbioru. Wbrew nazwie, nie jest to miara w ścisłym sensie. (pl) In mathematics, a content is a set function that is like a measure, but a content must only be finitely additive, whereas a measure must be countably additive. A content is a real function defined on a collection of subsets such that 1. * 2. * 3. * In many important applications the is chosen to be a Ring of sets or to be at least a Semiring of sets in which case some additional properties can be deduced which are described below. For this reason some authors prefer to define contents only for the case of semirings or even rings. (en) En théorie de la mesure, une mesure simplement additive est une version faible d'une mesure : au lieu d'être sigma-additive comme la mesure classique, elle est additive seulement pour l'union d'un nombre fini d'ensembles disjoints. Elle correspond davantage à l'idée intuitive que l'on se fait de la notion de mesure de distance parcourue, de mesure de surface, de mesure de volume ou de mesure de poids. (fr) |
rdfs:label | Inhalt (Maßtheorie) (de) Content (measure theory) (en) Mesure simplement additive (fr) 有限加法的測度 (ja) Miara skończenie addytywna (pl) |
owl:sameAs | freebase:Content (measure theory) yago-res:Content (measure theory) wikidata:Content (measure theory) dbpedia-de:Content (measure theory) dbpedia-fr:Content (measure theory) dbpedia-ja:Content (measure theory) dbpedia-pl:Content (measure theory) https://global.dbpedia.org/id/4iJyR |
prov:wasDerivedFrom | wikipedia-en:Content_(measure_theory)?oldid=1106927160&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Content_(measure_theory) |
is dbo:wikiPageDisambiguates of | dbr:Content |
is dbo:wikiPageRedirects of | dbr:Finitely_additive_measure |
is dbo:wikiPageWikiLink of | dbr:Ultrafilter_(set_theory) dbr:Measure_(mathematics) dbr:Box-counting_content dbr:Haar_measure dbr:Minkowski_content dbr:Carathéodory's_extension_theorem dbr:Jordan_measure dbr:Ultrafilter dbr:Content dbr:Metric_lattice dbr:Finitely_additive_measure |
is foaf:primaryTopic of | wikipedia-en:Content_(measure_theory) |