Convolution power (original) (raw)

About DBpedia

In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by where ∗ denotes the convolution operation of functions on Rd and δ0 is the Dirac delta distribution. This definition makes sense if x is an integrable function (in L1), a rapidly decreasing distribution (in particular, a compactly supported distribution) or is a finite Borel measure.

Property Value
dbo:abstract In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by where ∗ denotes the convolution operation of functions on Rd and δ0 is the Dirac delta distribution. This definition makes sense if x is an integrable function (in L1), a rapidly decreasing distribution (in particular, a compactly supported distribution) or is a finite Borel measure. If x is the distribution function of a random variable on the real line, then the nth convolution power of x gives the distribution function of the sum of n independent random variables with identical distribution x. The central limit theorem states that if x is in L1 and L2 with mean zero and variance σ2, then where Φ is the cumulative standard normal distribution on the real line. Equivalently, tends weakly to the standard normal distribution. In some cases, it is possible to define powers x*t for arbitrary real t > 0. If μ is a probability measure, then μ is infinitely divisible provided there exists, for each positive integer n, a probability measure μ1/n such that That is, a measure is infinitely divisible if it is possible to define all nth roots. Not every probability measure is infinitely divisible, and a characterization of infinitely divisible measures is of central importance in the abstract theory of stochastic processes. Intuitively, a measure should be infinitely divisible provided it has a well-defined "convolution logarithm." The natural candidate for measures having such a logarithm are those of (generalized) Poisson type, given in the form In fact, the states that a necessary and sufficient condition for a measure to be infinitely divisible is that it must lie in the closure, with respect to the vague topology, of the class of Poisson measures . Many applications of the convolution power rely on being able to define the analog of analytic functions as formal power series with powers replaced instead by the convolution power. Thus if is an analytic function, then one would like to be able to define If x ∈ L1(Rd) or more generally is a finite Borel measure on Rd, then the latter series converges absolutely in norm provided that the norm of x is less than the radius of convergence of the original series defining F(z). In particular, it is possible for such measures to define the convolutional exponential It is not generally possible to extend this definition to arbitrary distributions, although a class of distributions on which this series still converges in an appropriate weak sense is identified by . (en)
dbo:wikiPageID 12101596 (xsd:integer)
dbo:wikiPageLength 7649 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123904445 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbr:Quantum_field_theory dbr:Convolution_algebra dbr:Derivative dbc:Fourier_analysis dbr:Degree_distribution dbr:Infinite_divisibility_(probability) dbr:John_Wiley_&_Sons dbr:Convolution dbr:Convolution_theorem dbr:Analytic_function dbr:Mathematics dbr:Function_(mathematics) dbr:Lp_space dbr:Sobolev_space dbr:Hopf_algebra dbr:Central_limit_theorem dbr:Euclidean_space dbr:Formal_power_series dbr:Fourier_transform dbr:Banach_algebra dbr:Random_variable dbr:Taylor_series dbc:Functional_analysis dbr:Distribution_(mathematics) dbr:Borel_measure dbr:Connected_component_(graph_theory) dbr:Natural_number dbr:Probability_measure dbr:Stochastic_process dbr:Vague_topology dbr:Dirac_delta_distribution dbr:Poisson_process dbr:Integrable dbr:Standard_normal_distribution dbr:Lévy–Khinchin_theorem
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_arXiv dbt:Harv dbt:Harvtxt
dct:subject dbc:Fourier_analysis dbc:Functional_analysis
rdfs:comment In mathematics, the convolution power is the n-fold iteration of the convolution with itself. Thus if is a function on Euclidean space Rd and is a natural number, then the convolution power is defined by where ∗ denotes the convolution operation of functions on Rd and δ0 is the Dirac delta distribution. This definition makes sense if x is an integrable function (in L1), a rapidly decreasing distribution (in particular, a compactly supported distribution) or is a finite Borel measure. (en)
rdfs:label Convolution power (en)
owl:sameAs freebase:Convolution power wikidata:Convolution power https://global.dbpedia.org/id/4iNNY
prov:wasDerivedFrom wikipedia-en:Convolution_power?oldid=1123904445&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Convolution_power
is dbo:wikiPageWikiLink of dbr:Convolution dbr:Configuration_model dbr:Semigroup dbr:Network_science
is foaf:primaryTopic of wikipedia-en:Convolution_power