Covariance operator (original) (raw)

About DBpedia

Der Kovarianzoperator bezeichnet in der Stochastik einen linearen Operator, der den Begriff der Kovarianz auf unendlich-dimensionale Räume erweitert. Der Begriff wird in der Theorie der und der stochastischen Analysis auf Banach- und Hilberträumen verwendet.

Property Value
dbo:abstract Der Kovarianzoperator bezeichnet in der Stochastik einen linearen Operator, der den Begriff der Kovarianz auf unendlich-dimensionale Räume erweitert. Der Begriff wird in der Theorie der und der stochastischen Analysis auf Banach- und Hilberträumen verwendet. (de) In probability theory, for a probability measure P on a Hilbert space H with inner product , the covariance of P is the bilinear form Cov: H × H → R given by for all x and y in H. The covariance operator C is then defined by (from the Riesz representation theorem, such operator exists if Cov is bounded). Since Cov is symmetric in its arguments, the covariance operator isself-adjoint. When P is a centred Gaussian measure, C is also a nuclear operator. In particular, it is a compact operator of trace class, that is, it has finite trace. Even more generally, for a probability measure P on a Banach space B, the covariance of P is the bilinear form on the algebraic dual B#, defined by where is now the value of the linear functional x on the element z. Quite similarly, the covariance function of a function-valued random element (in special cases is called random process or random field) z is where z(x) is now the value of the function z at the point x, i.e., the value of the linear functional evaluated at z. * v * t * e (en)
dbo:wikiPageID 33447667 (xsd:integer)
dbo:wikiPageLength 2022 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1095682517 (xsd:integer)
dbo:wikiPageWikiLink dbr:Bilinear_form dbr:Riesz_representation_theorem dbc:Covariance_and_correlation dbr:Gaussian_measure dbr:Nuclear_operator dbr:Compact_operator dbr:Banach_space dbc:Probability_theory dbr:Trace_(mathematics) dbr:Random_field dbc:Bilinear_forms dbr:Linear_functional dbr:Probability_theory dbr:Hilbert_space dbr:Covariance_function dbr:Trace_class dbr:Inner_product dbr:Random_process dbr:Self-adjoint_operator dbr:Random_element dbr:Probability_measure dbr:Algebraic_dual
dbp:wikiPageUsesTemplate dbt:Short_description dbt:Probability-stub
dct:subject dbc:Covariance_and_correlation dbc:Probability_theory dbc:Bilinear_forms
rdf:type yago:WikicatBilinearForms yago:Abstraction100002137 yago:Form106290637 yago:LanguageUnit106284225 yago:Part113809207 yago:Relation100031921 yago:Word106286395
rdfs:comment Der Kovarianzoperator bezeichnet in der Stochastik einen linearen Operator, der den Begriff der Kovarianz auf unendlich-dimensionale Räume erweitert. Der Begriff wird in der Theorie der und der stochastischen Analysis auf Banach- und Hilberträumen verwendet. (de) In probability theory, for a probability measure P on a Hilbert space H with inner product , the covariance of P is the bilinear form Cov: H × H → R given by for all x and y in H. The covariance operator C is then defined by (from the Riesz representation theorem, such operator exists if Cov is bounded). Since Cov is symmetric in its arguments, the covariance operator isself-adjoint. When P is a centred Gaussian measure, C is also a nuclear operator. In particular, it is a compact operator of trace class, that is, it has finite trace. * v * t * e (en)
rdfs:label Kovarianzoperator (de) Covariance operator (en)
owl:sameAs freebase:Covariance operator yago-res:Covariance operator wikidata:Covariance operator dbpedia-de:Covariance operator https://global.dbpedia.org/id/4iLom
prov:wasDerivedFrom wikipedia-en:Covariance_operator?oldid=1095682517&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Covariance_operator
is dbo:wikiPageWikiLink of dbr:Downside_beta dbr:Preconditioned_Crank–Nicolson_algorithm dbr:Covariance dbr:Functional_data_analysis dbr:Feldman–Hájek_theorem dbr:Functional_principal_component_analysis dbr:Upside_beta
is foaf:primaryTopic of wikipedia-en:Covariance_operator