Generalized extreme value distribution (original) (raw)
Die verallgemeinerte Extremwertverteilung ist eine stetige Wahrscheinlichkeitsverteilung. Sie spielt eine herausragende Rolle in der Extremwerttheorie, da sie alle möglichen asymptotischen Verteilungen des Maximums einer einfachen Zufallsstichprobe in einer Darstellung zusammenfasst.Die verallgemeinerte Extremwertverteilung fasst die Gumbel-Verteilung, die Fréchet-Verteilung und die Weibull-Verteilung zusammen.
Property | Value |
---|---|
dbo:abstract | Die verallgemeinerte Extremwertverteilung ist eine stetige Wahrscheinlichkeitsverteilung. Sie spielt eine herausragende Rolle in der Extremwerttheorie, da sie alle möglichen asymptotischen Verteilungen des Maximums einer einfachen Zufallsstichprobe in einer Darstellung zusammenfasst.Die verallgemeinerte Extremwertverteilung fasst die Gumbel-Verteilung, die Fréchet-Verteilung und die Weibull-Verteilung zusammen. (de) In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables. In some fields of application the generalized extreme value distribution is known as the Fisher–Tippett distribution, named after Ronald Fisher and L. H. C. Tippett who recognised three different forms outlined below. However usage of this name is sometimes restricted to mean the special case of the Gumbel distribution. The origin of the common functional form for all 3 distributions dates back to at least Jenkinson, A. F. (1955), though allegedly it could also have been given by von Mises, R. (1936). (en) En probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid). La loi d'extrémum généralisée est connue sous le nom de loi de Fisher-Tippett, d'après Ronald Fisher et L. H. C. Tippett qui ont étudié les trois formes fonctionnelles ci-dessous. Parfois, ce nom signifie plus particulièrement le cas de la loi de Gumbel. (fr) In teoria della probabilità la distribuzione generalizzata dei valori estremi (dall'inglese generalized extreme value distribution, in sigla GEV), o distribuzione di Fisher-Tippett, è una famiglia di distribuzioni di probabilità che raccoglie la distribuzione di Fréchet, la distribuzione di Weibull e la distribuzione di Gumbel (come caso al limite). Questa famiglia è comune nella teoria dei valori estremi, dove descrive il limite dei massimi in una successione di variabili aleatorie indipendenti, secondo il . Il secondo nome con cui è conosciuta deriva dagli statistici britannici Fisher e Tippett. (it) 極値分布(きょくちぶんぷ、英: extreme value distribution)とは、確率論および統計学において、ある累積分布関数にしたがって生じた大きさ n の標本 X1,X2, …, Xn のうち、x 以上 (あるいは以下) となるものの個数がどのように分布するかを表す、連続確率分布モデルである。特に最大値や最小値などが漸近的に従う分布であり、河川の氾濫、最大風速、最大降雨量、金融におけるリスク等の分布に適用される。 (ja) |
dbo:thumbnail | wiki-commons:Special:FilePath/GevDensity_2.svg?width=300 |
dbo:wikiPageExternalLink | https://books.google.com/books%3Fid=2nugUEaKqFEC&pg=PP1 https://books.google.com/books%3Fid=BXOI2pICfJUC%7Cisbn=9783540609315 |
dbo:wikiPageID | 1494479 (xsd:integer) |
dbo:wikiPageLength | 21374 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1118970041 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Probability_distribution dbr:Ronald_Fisher dbr:Probit_model dbr:Euler’s_constant dbr:Hydrology dbr:Riemann_zeta_function dbr:CumFreq dbr:Kurtosis dbr:Quantile_function dbc:Extreme_value_data dbr:Generalized_Pareto_distribution dbr:Gamma_function dbr:German_tank_problem dbr:Location_parameter dbr:Sign_function dbr:Statistics dbc:Stability_(probability) dbr:Fréchet_distribution dbr:Logistic_distribution dbr:Logistic_regression dbr:Cumulative_distribution_function dbr:Cumulative_frequency_analysis dbr:Euler–Mascheroni_constant dbr:Exponential_distribution dbr:Normal_Distribution dbr:Normal_distribution dbr:Discrete_choice dbr:Probability_theory dbc:Location-scale_family_probability_distributions dbc:Continuous_distributions dbr:L._H._C._Tippett dbr:Latent_variable dbr:Binomial_distribution dbr:Weibull_distribution dbr:I.i.d. dbr:Scale_parameter dbr:Skewness dbr:Value_at_risk dbr:Extreme_value_theory dbr:Gumbel_distribution dbr:Stability_postulate dbr:Fisher–Tippett–Gnedenko_theorem dbr:Pickands–Balkema–De_Haan_theorem dbr:Shape_parameter dbr:Confidence_belt dbr:Plotting_position dbr:Error_variable dbr:Logit_function dbr:Logit_model dbr:Multinomial_logit dbr:File:GEV_Surinam.png dbr:File:GevDensity_2.svg |
dbp:cdf | for x ∈ support (en) |
dbp:mean | and is Euler’s constant. (en) where gk = Γ, (en) |
dbp:parameters | μ ∈ R — location, (en) ξ ∈ R — shape. (en) σ > 0 — scale, (en) |
dbp:pdf | where (en) |
dbp:skewness | and is the Riemann zeta function (en) where is the sign function (en) |
dbp:support | x ∈ [ μ − σ / ξ, +∞) when ξ > 0, (en) x ∈ (en) x ∈ when ξ = 0, (en) |
dbp:type | density (en) |
dbp:variance | . (en) |
dbp:wikiPageUsesTemplate | dbt:Citation_needed dbt:Cite_book dbt:More_citations_needed dbt:ProbDistributions dbt:Reflist dbt:Probability_distribution |
dct:subject | dbc:Extreme_value_data dbc:Stability_(probability) dbc:Location-scale_family_probability_distributions dbc:Continuous_distributions |
rdf:type | yago:WikicatContinuousDistributions yago:Abstraction100002137 yago:Arrangement105726596 yago:Cognition100023271 yago:Datum105816622 yago:Distribution105729036 yago:Information105816287 yago:PsychologicalFeature100023100 yago:Structure105726345 yago:WikicatExtremeValueData yago:WikicatProbabilityDistributions |
rdfs:comment | Die verallgemeinerte Extremwertverteilung ist eine stetige Wahrscheinlichkeitsverteilung. Sie spielt eine herausragende Rolle in der Extremwerttheorie, da sie alle möglichen asymptotischen Verteilungen des Maximums einer einfachen Zufallsstichprobe in einer Darstellung zusammenfasst.Die verallgemeinerte Extremwertverteilung fasst die Gumbel-Verteilung, die Fréchet-Verteilung und die Weibull-Verteilung zusammen. (de) 極値分布(きょくちぶんぷ、英: extreme value distribution)とは、確率論および統計学において、ある累積分布関数にしたがって生じた大きさ n の標本 X1,X2, …, Xn のうち、x 以上 (あるいは以下) となるものの個数がどのように分布するかを表す、連続確率分布モデルである。特に最大値や最小値などが漸近的に従う分布であり、河川の氾濫、最大風速、最大降雨量、金融におけるリスク等の分布に適用される。 (ja) In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables. (en) En probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid). (fr) In teoria della probabilità la distribuzione generalizzata dei valori estremi (dall'inglese generalized extreme value distribution, in sigla GEV), o distribuzione di Fisher-Tippett, è una famiglia di distribuzioni di probabilità che raccoglie la distribuzione di Fréchet, la distribuzione di Weibull e la distribuzione di Gumbel (come caso al limite). Questa famiglia è comune nella teoria dei valori estremi, dove descrive il limite dei massimi in una successione di variabili aleatorie indipendenti, secondo il . (it) |
rdfs:label | Extremwertverteilung (de) Loi d'extremum généralisée (fr) Generalized extreme value distribution (en) Distribuzione generalizzata dei valori estremi (it) 極値分布 (ja) |
owl:sameAs | freebase:Generalized extreme value distribution yago-res:Generalized extreme value distribution wikidata:Generalized extreme value distribution dbpedia-de:Generalized extreme value distribution dbpedia-fa:Generalized extreme value distribution dbpedia-fr:Generalized extreme value distribution dbpedia-it:Generalized extreme value distribution dbpedia-ja:Generalized extreme value distribution dbpedia-sl:Generalized extreme value distribution https://global.dbpedia.org/id/bpQq |
prov:wasDerivedFrom | wikipedia-en:Generalized_extreme_value_distribution?oldid=1118970041&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/GEV_Surinam.png wiki-commons:Special:FilePath/GevDensity_2.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Generalized_extreme_value_distribution |
is dbo:knownFor of | dbr:Ronald_Fisher |
is dbo:wikiPageDisambiguates of | dbr:GEV |
is dbo:wikiPageRedirects of | dbr:Extreme_value_distribution dbr:Generalized_Extreme_Value_Distribution dbr:Fisher-Tippet dbr:Fisher-Tippett_distribution dbr:Fisher–Tippett_distribution dbr:GEV_distribution dbr:Generalised_extreme_value_distribution |
is dbo:wikiPageWikiLink of | dbr:Ronald_Fisher dbr:CumFreq dbr:Dynamic_discrete_choice dbr:Independence_of_irrelevant_alternatives dbr:GEV dbr:List_of_probability_distributions dbr:Generalized_Pareto_distribution dbr:German_tank_problem dbr:Choice_model_simulation dbr:Fréchet_distribution dbr:Stability_(probability) dbr:Heavy-tailed_distribution dbr:Location–scale_family dbr:Percentile dbr:Exponential_distribution dbr:Discrete_choice dbr:Extreme_value_distribution dbr:Hydrological_model dbr:L-moment dbr:Binomial_regression dbr:Weibull_distribution dbr:Generalized_Extreme_Value_Distribution dbr:Expected_shortfall dbr:Extreme_value_theory dbr:Gumbel_distribution dbr:List_of_statistics_articles dbr:Stochastic_simulation dbr:Fisher–Tippett–Gnedenko_theorem dbr:Tail_value_at_risk dbr:Shifted_Gompertz_distribution dbr:Shifted_log-logistic_distribution dbr:Shape_parameter dbr:Fisher-Tippet dbr:Fisher-Tippett_distribution dbr:Fisher–Tippett_distribution dbr:GEV_distribution dbr:Generalised_extreme_value_distribution |
is dbp:knownFor of | dbr:Ronald_Fisher |
is foaf:primaryTopic of | wikipedia-en:Generalized_extreme_value_distribution |