Haag–Łopuszański–Sohnius theorem (original) (raw)
In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974.
Property | Value |
---|---|
dbo:abstract | Das Haag-Łopuszański-Sohnius-Theorem der theoretischen Physik (gefunden 1975 von Rudolf Haag, und ) besagt, dass die Symmetrien einer konsistenten Quantenfeldtheorie nicht bereits mit einer trivialen Kombination von internen Symmetriegruppen und der maximal sind (Coleman-Mandula-Theorem), sondern erst und ausschließlich unter Einbeziehung von Supersymmetrie (SUSY). Der entscheidende Ausweg aus dem (englisch) von Coleman und Mandula war dabei, nicht nur bosonische, sondern auch fermionische Generatoren zuzulassen. Auf diese Weise erhält man die Supersymmetrie zwischen Bosonen und Fermionen. Die fermionischen Generatoren ändern nur den Spin der Teilchen, alle anderen Quantenzahlen werden nicht beeinflusst. Insbesondere kommutieren die SUSY-Generatoren mit dem Viererimpuls, der Antikommutator zweier SUSY-Generatoren jedoch liefert eine Raumzeit-Transformation. (de) In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974. (en) En física teórica, el teorema de Haag-Łopuszański-Sohnius demuestra que las posibles simetrías de una teoría cuántica de campos consistente formulada sobre un espacio-tiempo cuatridimensional, no sólo consisten en simetrías internas y simetría de Poincaré, sino que también pueden incluir la supersimetría con cargas centrales (CCs) como una extensión no trivial del . La supersimetría sin CCs fue descubierta en 1971 por Yuri Golfand y que generalizaron el teorema de Coleman-Mandula.Uno de los resultados importantes es que la parte fermiónica de la superálgebra de Lie tiene que tener espín-1/2 (se descarta el espín 3/2 o superior). (es) 하크-워푸샨스키-조니우스 정리(Haag–Łopuszański–Sohnius theorem)는 이론물리학 용어의 하나로, 콜먼-맨듈라 정리를 확장하여, 4차원 시공에서 가능한, 푸앵카레 대칭과 을 섞는 대칭은 초대칭밖에 없다는 정리이다. (ko) Em física teórica, o Teorema de Haag-Lopuszanski-Sohnius mostra que as possíveis simetrias de um espaço-tempo com quatro dimensões pela teoria quântica dos campos não apenas consistem de simetrias internas e simetria de Poincaré, mas podem também incluir a supersimetria como uma extensão não trivial da álgebra de Poincaré. Isto generaliza significativamente o teorema de Coleman–Mandula. (pt) |
dbo:wikiPageID | 4402244 (xsd:integer) |
dbo:wikiPageLength | 9635 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1124755998 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Quantum_field_theory dbr:Rudolf_Haag dbr:Algebra_over_a_field dbr:Anticommutative_property dbr:Julius_Wess dbr:Jan_Łopuszański_(physicist) dbr:Scattering_amplitude dbr:Lie_group dbr:Van_der_Waerden_notation dbc:Quantum_field_theory dbr:Commutative_property dbr:Conformal_symmetry dbr:Analytic_function dbc:Theoretical_physics dbr:Mass dbr:S-matrix dbr:Generator_(mathematics) dbr:Energy dbr:Wess–Zumino_model dbr:Lie_algebra dbr:Majorana_equation dbr:Compact_group dbr:Particle dbr:Theoretical_physics dbr:Massless_particle dbr:Bruno_Zumino dbr:CERN dbc:Supersymmetry dbc:Theorems_in_quantum_mechanics dbr:Momentum_operator dbr:Super-Poincaré_algebra dbr:Four-dimensional_space dbr:Central_charge dbr:Direct_product dbr:Discrete_symmetry dbr:Hermitian_matrix dbr:Chirality_(physics) dbr:Karlsruhe dbr:Supergravity dbr:Symmetry_(physics) dbr:Coleman–Mandula_theorem dbr:Homothety dbr:Spacetime_symmetries dbr:Spin_(physics) dbr:Spinor dbr:Spontaneous_symmetry_breaking dbr:Group_representation dbr:Wrocław dbr:Extended_supersymmetry dbr:Special_conformal_transformation dbr:Poincaré_group dbr:Supersymmetry dbr:Superconformal_algebra dbr:R-symmetry dbr:Supercharge dbr:Weyl_equation dbr:Lie_superalgebras |
dbp:wikiPageUsesTemplate | dbt:Supersymmetry_topics dbt:Reflist dbt:Short_description |
dcterms:subject | dbc:Quantum_field_theory dbc:Theoretical_physics dbc:Supersymmetry dbc:Theorems_in_quantum_mechanics |
rdfs:comment | In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974. (en) En física teórica, el teorema de Haag-Łopuszański-Sohnius demuestra que las posibles simetrías de una teoría cuántica de campos consistente formulada sobre un espacio-tiempo cuatridimensional, no sólo consisten en simetrías internas y simetría de Poincaré, sino que también pueden incluir la supersimetría con cargas centrales (CCs) como una extensión no trivial del . La supersimetría sin CCs fue descubierta en 1971 por Yuri Golfand y que generalizaron el teorema de Coleman-Mandula.Uno de los resultados importantes es que la parte fermiónica de la superálgebra de Lie tiene que tener espín-1/2 (se descarta el espín 3/2 o superior). (es) 하크-워푸샨스키-조니우스 정리(Haag–Łopuszański–Sohnius theorem)는 이론물리학 용어의 하나로, 콜먼-맨듈라 정리를 확장하여, 4차원 시공에서 가능한, 푸앵카레 대칭과 을 섞는 대칭은 초대칭밖에 없다는 정리이다. (ko) Em física teórica, o Teorema de Haag-Lopuszanski-Sohnius mostra que as possíveis simetrias de um espaço-tempo com quatro dimensões pela teoria quântica dos campos não apenas consistem de simetrias internas e simetria de Poincaré, mas podem também incluir a supersimetria como uma extensão não trivial da álgebra de Poincaré. Isto generaliza significativamente o teorema de Coleman–Mandula. (pt) Das Haag-Łopuszański-Sohnius-Theorem der theoretischen Physik (gefunden 1975 von Rudolf Haag, und ) besagt, dass die Symmetrien einer konsistenten Quantenfeldtheorie nicht bereits mit einer trivialen Kombination von internen Symmetriegruppen und der maximal sind (Coleman-Mandula-Theorem), sondern erst und ausschließlich unter Einbeziehung von Supersymmetrie (SUSY). (de) |
rdfs:label | Haag-Łopuszański-Sohnius-Theorem (de) Teorema de Haag–Łopuszański–Sohnius (es) Haag–Łopuszański–Sohnius theorem (en) 하크-워푸샨스키-조니우스 정리 (ko) Teorema de Haag-Lopuszanski-Sohnius (pt) |
owl:sameAs | wikidata:Haag–Łopuszański–Sohnius theorem dbpedia-de:Haag–Łopuszański–Sohnius theorem dbpedia-es:Haag–Łopuszański–Sohnius theorem dbpedia-ko:Haag–Łopuszański–Sohnius theorem dbpedia-pt:Haag–Łopuszański–Sohnius theorem https://global.dbpedia.org/id/4mSrj |
prov:wasDerivedFrom | wikipedia-en:Haag–Łopuszański–Sohnius_theorem?oldid=1124755998&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Haag–Łopuszański–Sohnius_theorem |
is dbo:knownFor of | dbr:Rudolf_Haag |
is dbo:wikiPageRedirects of | dbr:Haag-Lopuszanski-Sohnius_theorem dbr:Haag–Lopuszanski–Sohnius_theorem dbr:Haag-Łopuszański-Sohnius_theorem |
is dbo:wikiPageWikiLink of | dbr:Rudolf_Haag dbr:Haag-Lopuszanski-Sohnius_theorem dbr:Haag–Lopuszanski–Sohnius_theorem dbr:Super-Poincaré_algebra dbr:Supersymmetry_algebra dbr:No-go_theorem dbr:Haag-Łopuszański-Sohnius_theorem dbr:Coleman–Mandula_theorem dbr:List_of_theorems dbr:Supersymmetry |
is dbp:knownFor of | dbr:Rudolf_Haag |
is foaf:primaryTopic of | wikipedia-en:Haag–Łopuszański–Sohnius_theorem |