Coleman–Mandula theorem (original) (raw)
In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem.
Property | Value |
---|---|
dbo:abstract | Das 1967 von Sidney Coleman und Jeffrey Mandula gefundene Coleman-Mandula-Theorem ist ein (engl.) der theoretischen Physik, das auf sehr allgemeinen Annahmen beruht (zum Beispiel Existenz und Nichttrivialität der S-Matrix, nichtentartetes Vakuum und keine masselosen Elementarteilchen). Es besagt, dass jede Lie-Algebra, welche die Poincaré-Gruppe und eine interne Symmetriegruppe enthält, ein direktes Produkt dieser beiden Gruppen sein muss. Eine externe (raum-zeitliche) Symmetrie kann also nur trivial mit einer internen Symmetrie kombiniert werden. Die tensoralen Symmetrien sind somit bereits mit den Generatoren der Poincaré-Gruppe maximal. Rudolf Haag, und konnten 1975 jedoch zeigen (Haag-Łopuszański-Sohnius-Theorem), dass die Hinzunahme von antikommutierenden Generatoren die einzig mögliche, nicht-triviale Erweiterung der zu einer sogenannten Superalgebra erlaubt (siehe auch Supersymmetrie). (de) In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem. (en) El teorema de Coleman–Mandula (debido a Sidney Coleman y Jeffrey Mandula) es un teorema de imposibilidad en física teórica. Declara que "las simetrías espaciotemporales y las simetrías internas no pueden ser combinadas, salvo de manera trivial" en aquellas teorías de campo que cumplen ciertas suposiciones. En este caso, (que incluye las teorías que podemos considerar realistas), las únicas cantidades conservadas posibles son escalares de Lorentz. (es) Il teorema di Coleman–Mandula, prende il nome da Sidney Coleman and , è un "no-go theorem" in fisica teorica. Esso afferma che le sole quantità conservate a parte i generatori del gruppo di Poincaré, devono essere scalari di Lorentz. Il teorema Coleman–Mandula è uno dei principi di base su cui si basa la teoria della supersimmetria; in quanto si può affermare che i generatori di supersimmetria devono soddisfare delle relazioni di anticommutazione. (it) 양자장론에서 콜먼-맨듈라 정리(영어: Coleman–Mandula theorem)는 대부분의 이론에서는 각운동량과 4차원 운동량을 제외한 모든 연속적 보존량은 로런츠 스칼라라는 정리다. 여기서 "대부분의 이론"이란 질량 간극을 가지고 상호작용을 하는 로런츠 공변 이론이다. (ko) Na física teórica, o teorema de Coleman–Mandula é um teorema de impossibilidade e foi descoberto pelos físicos Sidney Coleman e Jeffrey Mandula. Ele estabelece que a única quantidade conservada de energia com um intervalo de massa numa teoria realista deve ser um . (pt) |
dbo:wikiPageExternalLink | https://www.mathi.uni-heidelberg.de/~walcher/teaching/sose16/geo_phys/ColemanMandula.pdf http://www.scholarpedia.org/article/Coleman-Mandula_theorem |
dbo:wikiPageID | 1372610 (xsd:integer) |
dbo:wikiPageLength | 12850 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1124654858 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Quantum_field_theory dbr:Quark dbr:Elastic_scattering dbr:De_Sitter_space dbr:Algebra_over_a_field dbr:Scattering_amplitude dbr:Lie_group dbr:Lie_superalgebra dbr:Pseudoscalar_meson dbc:Quantum_field_theory dbr:Commutator dbr:Conformal_symmetry dbr:Analytic_function dbr:Mass dbr:S-matrix dbr:Generator_(mathematics) dbr:Nuclear_physics dbr:Classical_field_theory dbr:Edward_Witten dbr:Eightfold_way_(physics) dbr:Energy dbr:Lie_algebra dbr:Lorentz_transformation dbr:Sidney_Coleman dbr:String_theory dbr:Hadron_spectroscopy dbr:Overdetermined_system dbr:Theoretical_physics dbr:Supergroup_(physics) dbr:Massless_particle dbc:Supersymmetry dbc:Theorems_in_quantum_mechanics dbr:Galilean_invariance dbr:Haag–Łopuszański–Sohnius_theorem dbr:Lochlainn_O'Raifeartaigh dbr:Super-Poincaré_algebra dbr:Supersymmetry_algebra dbr:Thirring_model dbr:No-go_theorem dbr:Eugene_Wigner dbr:Flavour_(particle_physics) dbr:Baryon dbr:Discrete_symmetry dbr:Kinematics dbr:Quantum_chromodynamics dbr:Rank_(linear_algebra) dbr:Theory_of_relativity dbr:Group_(mathematics) dbr:Hadron dbr:Tensor dbr:Tensor_product dbr:Jeffrey_Mandula dbr:Charge_conservation dbr:Symmetry_(physics) dbr:Homothety dbr:Direct_product_of_groups dbr:Distribution_(mathematics) dbr:Position_and_momentum_space dbr:Spacetime_symmetries dbr:Spin_(physics) dbr:Spinor dbr:Spontaneous_symmetry_breaking dbr:Meson dbr:Lorentz_scalar dbr:Extended_supersymmetry dbr:Principle_of_locality dbr:Quantum_group dbr:Special_conformal_transformation dbr:Poincaré_group dbr:Supersymmetry dbr:Superconformal_algebra dbr:Supercharge dbr:Multiplet dbr:Vector_meson |
dbp:wikiPageUsesTemplate | dbt:Supersymmetry_topics dbt:Reflist dbt:Short_description |
dct:subject | dbc:Quantum_field_theory dbc:Supersymmetry dbc:Theorems_in_quantum_mechanics |
gold:hypernym | dbr:Theorem |
rdf:type | yago:WikicatTheoremsInQuantumPhysics yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem. (en) El teorema de Coleman–Mandula (debido a Sidney Coleman y Jeffrey Mandula) es un teorema de imposibilidad en física teórica. Declara que "las simetrías espaciotemporales y las simetrías internas no pueden ser combinadas, salvo de manera trivial" en aquellas teorías de campo que cumplen ciertas suposiciones. En este caso, (que incluye las teorías que podemos considerar realistas), las únicas cantidades conservadas posibles son escalares de Lorentz. (es) Il teorema di Coleman–Mandula, prende il nome da Sidney Coleman and , è un "no-go theorem" in fisica teorica. Esso afferma che le sole quantità conservate a parte i generatori del gruppo di Poincaré, devono essere scalari di Lorentz. Il teorema Coleman–Mandula è uno dei principi di base su cui si basa la teoria della supersimmetria; in quanto si può affermare che i generatori di supersimmetria devono soddisfare delle relazioni di anticommutazione. (it) 양자장론에서 콜먼-맨듈라 정리(영어: Coleman–Mandula theorem)는 대부분의 이론에서는 각운동량과 4차원 운동량을 제외한 모든 연속적 보존량은 로런츠 스칼라라는 정리다. 여기서 "대부분의 이론"이란 질량 간극을 가지고 상호작용을 하는 로런츠 공변 이론이다. (ko) Na física teórica, o teorema de Coleman–Mandula é um teorema de impossibilidade e foi descoberto pelos físicos Sidney Coleman e Jeffrey Mandula. Ele estabelece que a única quantidade conservada de energia com um intervalo de massa numa teoria realista deve ser um . (pt) Das 1967 von Sidney Coleman und Jeffrey Mandula gefundene Coleman-Mandula-Theorem ist ein (engl.) der theoretischen Physik, das auf sehr allgemeinen Annahmen beruht (zum Beispiel Existenz und Nichttrivialität der S-Matrix, nichtentartetes Vakuum und keine masselosen Elementarteilchen). Es besagt, dass jede Lie-Algebra, welche die Poincaré-Gruppe und eine interne Symmetriegruppe enthält, ein direktes Produkt dieser beiden Gruppen sein muss. Eine externe (raum-zeitliche) Symmetrie kann also nur trivial mit einer internen Symmetrie kombiniert werden. Die tensoralen Symmetrien sind somit bereits mit den Generatoren der Poincaré-Gruppe maximal. (de) |
rdfs:label | Coleman-Mandula-Theorem (de) Teorema de Coleman-Mandula (es) Coleman–Mandula theorem (en) Teorema di Coleman-Mandula (it) 콜먼-맨듈라 정리 (ko) Teorema de Coleman–Mandula (pt) |
owl:sameAs | freebase:Coleman–Mandula theorem wikidata:Coleman–Mandula theorem dbpedia-de:Coleman–Mandula theorem dbpedia-es:Coleman–Mandula theorem dbpedia-it:Coleman–Mandula theorem dbpedia-ko:Coleman–Mandula theorem dbpedia-pt:Coleman–Mandula theorem https://global.dbpedia.org/id/4qvtQ |
prov:wasDerivedFrom | wikipedia-en:Coleman–Mandula_theorem?oldid=1124654858&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Coleman–Mandula_theorem |
is dbo:wikiPageRedirects of | dbr:Coleman-Mandula_theorem |
is dbo:wikiPageWikiLink of | dbr:Rudolf_Haag dbr:Index_of_physics_articles_(C) dbr:Infraparticle dbr:Conformal_symmetry dbr:An_Exceptionally_Simple_Theory_of_Everything dbr:Gauge_covariant_derivative dbr:Glossary_of_string_theory dbr:Sidney_Coleman dbr:Mass_gap dbr:Coleman-Mandula_theorem dbr:Haag–Łopuszański–Sohnius_theorem dbr:List_of_Columbia_College_people dbr:Lochlainn_O'Raifeartaigh dbr:Super-Poincaré_algebra dbr:No-go_theorem dbr:List_of_Illinois_Institute_of_Technology_alumni dbr:Universal_enveloping_algebra dbr:Jeffrey_Mandula dbr:List_of_theorems dbr:Supersymmetry dbr:Scientific_phenomena_named_after_people |
is foaf:primaryTopic of | wikipedia-en:Coleman–Mandula_theorem |