Hamming graph (original) (raw)
Les graphes de Hamming forment une famille de graphes. Le graphe de Hamming de dimension d sur un alphabet de taille q est défini de la manière suivante : est le graphe dont les sommets sont , l'ensemble des mots de longueur sur un alphabet , où . Deux sommets sont adjacents dans s'ils sont à une distance de Hamming de 1, c'est-à-dire si leurs étiquettes ne diffèrent que d'un symbole.
Property | Value |
---|---|
dbo:abstract | Hamming graphs are a special class of graphs named after Richard Hamming and used in several branches of mathematics (graph theory) and computer science. Let S be a set of q elements and d a positive integer. The Hamming graph H(d,q) has vertex set Sd, the set of ordered d-tuples of elements of S, or sequences of length d from S. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph H(d,q) is, equivalently, the Cartesian product of d complete graphs Kq. In some cases, Hamming graphs may be considered more generally as the Cartesian products of complete graphs that may be of varying sizes. Unlike the Hamming graphs H(d,q), the graphs in this more general class are not necessarily distance-regular, but they continue to be regular and vertex-transitive. (en) Les graphes de Hamming forment une famille de graphes. Le graphe de Hamming de dimension d sur un alphabet de taille q est défini de la manière suivante : est le graphe dont les sommets sont , l'ensemble des mots de longueur sur un alphabet , où . Deux sommets sont adjacents dans s'ils sont à une distance de Hamming de 1, c'est-à-dire si leurs étiquettes ne diffèrent que d'un symbole. (fr) Графы Хэмминга — это специальный класс графов, названных именем Ричарда Хэмминга и используемых в некоторых областях математики и информатики. (ru) Графи Геммінга — це спеціальний клас графів, названих ім'ям Річарда Геммінга, які використовуються в деяких галузях математики та інформатики. (uk) |
dbo:thumbnail | wiki-commons:Special:FilePath/Hamming_3-3_unit_distance.svg?width=300 |
dbo:wikiPageExternalLink | http://www.win.tue.nl/~aeb/graphs/Hamming.html |
dbo:wikiPageID | 8046549 (xsd:integer) |
dbo:wikiPageLength | 7063 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1103637318 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Rook's_graph dbr:Hypercube_graph dbr:Regular_graph dbr:Richard_Hamming dbr:Unit_distance_graph dbr:Vertex-transitive_graph dbc:Regular_graphs dbr:Complete_graph dbr:Mathematics dbr:Graph_(discrete_mathematics) dbr:Gray_code dbr:Linear_time dbr:Complete_quadrangle dbr:Computer_science dbr:Tuple dbr:Distance-regular_graph dbr:Distributed_computing dbr:Lattice_graph dbc:Parametric_families_of_graphs dbr:Graph_theory dbr:Hamiltonian_path dbr:Hamming_distance dbr:Association_scheme dbr:Integer dbr:Cartesian_product_of_graphs dbr:Set_(mathematics) dbr:Vertex_(graph_theory) dbr:Error-correcting_codes dbr:File:Hamming_3-3_unit_distance.svg |
dbp:id | HammingGraph (en) |
dbp:name | Hamming graph (en) |
dbp:namesake | dbr:Richard_Hamming |
dbp:properties | dbr:Vertex-transitive_graph dbr:Distance-regular_graph -regular (en) |
dbp:title | Hamming Graph (en) |
dbp:wikiPageUsesTemplate | dbt:Authority_control dbt:Cite_web dbt:Infobox_graph dbt:Math dbt:MathWorld dbt:Mvar dbt:Reflist dbt:Short_description dbt:Sub dbt:Sup |
dcterms:subject | dbc:Regular_graphs dbc:Parametric_families_of_graphs |
rdf:type | owl:Thing yago:Abstraction100002137 yago:Communication100033020 yago:Graph107000195 yago:VisualCommunication106873252 yago:WikicatRegularGraphs |
rdfs:comment | Les graphes de Hamming forment une famille de graphes. Le graphe de Hamming de dimension d sur un alphabet de taille q est défini de la manière suivante : est le graphe dont les sommets sont , l'ensemble des mots de longueur sur un alphabet , où . Deux sommets sont adjacents dans s'ils sont à une distance de Hamming de 1, c'est-à-dire si leurs étiquettes ne diffèrent que d'un symbole. (fr) Графы Хэмминга — это специальный класс графов, названных именем Ричарда Хэмминга и используемых в некоторых областях математики и информатики. (ru) Графи Геммінга — це спеціальний клас графів, названих ім'ям Річарда Геммінга, які використовуються в деяких галузях математики та інформатики. (uk) Hamming graphs are a special class of graphs named after Richard Hamming and used in several branches of mathematics (graph theory) and computer science. Let S be a set of q elements and d a positive integer. The Hamming graph H(d,q) has vertex set Sd, the set of ordered d-tuples of elements of S, or sequences of length d from S. Two vertices are adjacent if they differ in precisely one coordinate; that is, if their Hamming distance is one. The Hamming graph H(d,q) is, equivalently, the Cartesian product of d complete graphs Kq. (en) |
rdfs:label | Hamming graph (en) Graphe de Hamming (fr) Граф Хэмминга (ru) Граф Геммінга (uk) |
owl:sameAs | freebase:Hamming graph http://d-nb.info/gnd/4736681-3 wikidata:Hamming graph dbpedia-fr:Hamming graph dbpedia-ru:Hamming graph dbpedia-uk:Hamming graph https://global.dbpedia.org/id/3Qmnp yago-res:Hamming graph |
prov:wasDerivedFrom | wikipedia-en:Hamming_graph?oldid=1103637318&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Hamming_3-3_unit_distance.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Hamming_graph |
is dbo:wikiPageWikiLink of | dbr:Queue_number dbr:Rook's_graph dbr:De_Bruijn_graph dbr:Hypercube_graph dbr:Richard_Hamming dbr:Cube dbr:Unit_distance_graph dbr:Analysis_of_Boolean_functions dbr:Distance-transitive_graph dbr:Locally_linear_graph dbr:Michael_Herzog_(neuroscientist) |
is foaf:primaryTopic of | wikipedia-en:Hamming_graph |