Jacobi elliptic functions (original) (raw)

About DBpedia

Les funcions el·líptiques de Jacobi introduïdes pel matemàtic prussià Carl Gustav Jacob Jacobi al voltant de 1830 són un conjunt de funcions el·líptiques i , importants històricament, i tenen diverses aplicacions (com en la resolució de l'). Les funcions el·líptiques tenen diverses analogies amb les , incloent la notació (sn, cn , etc.) que té analogia amb les trigonomètriques ( sin i cos ).

thumbnail

Property Value
dbo:abstract Les funcions el·líptiques de Jacobi introduïdes pel matemàtic prussià Carl Gustav Jacob Jacobi al voltant de 1830 són un conjunt de funcions el·líptiques i , importants històricament, i tenen diverses aplicacions (com en la resolució de l'). Les funcions el·líptiques tenen diverses analogies amb les , incloent la notació (sn, cn , etc.) que té analogia amb les trigonomètriques ( sin i cos ). (ca) Eliptický integrál je v integrálním počtu jednou z řady příbuzných funkcí definovaných jako hodnoty určitých integrálů, které poprvé studovali Giulio Fagnano a Leonhard Euler okolo roku 1750. Jejich název pochází z toho, že původně vznikly v souvislosti s problémem nalezení délky oblouku elipsy. (cs) In der Mathematik ist eine Jacobische elliptische Funktion oder auch Jacobische Amplitudenfunktion eine von zwölf speziellen elliptischen Funktionen. Die Jacobischen elliptischen Funktionen haben einige Analogien zu den trigonometrischen Funktionen und finden zahlreiche Anwendungen in der mathematischen Physik, bei elliptischen Filtern und in der Geometrie, insbesondere für die Pendelgleichung und die Bogenlänge einer Ellipse. Carl Gustav Jakob Jacobi führte sie um 1830 ein. Carl Friedrich Gauß hatte jedoch schon 1796 mit dem lemniskatischen Sinus und Kosinus zwei spezielle Jacobische Funktionen untersucht, seine Notizen darüber aber nicht veröffentlicht. Für die allgemeine Theorie der elliptischen Funktionen spielen heute jedoch weniger die Jacobischen als vielmehr die Weierstraßschen elliptischen Funktionen eine Rolle. (de) In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. (en) Las funciones elípticas de Jacobi son funciones definidas a partir de la integral elíptica de primera especie y aparecen en diversos contextos, deben su nombre al matemático alemán Carl Gustav Jakob Jacobi (1829). En física aparecen por ejemplo las oscilaciones de un péndulo con grandes amplitudes sometido a la gravedad, o el movimiento de una peonza asimétrica. (es) En mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi. (fr) 수학에서 야코비 타원함수(Jacobi楕圓函數, 영어: Jacobi elliptic function)는 세 개의 특수 함수 sn, cn, dn이다. 이들은 삼각함수와 유사한 항등식들을 만족시킨다. (ko) 数学において、ヤコビの楕円関数(ヤコビのだえんかんすう、英: Jacobi elliptic functions)とは、基本的な楕円関数の一群であり、追加でテータ関数を含むこともあり、歴史的に重要な関数からなる。これらの関数は重要な構造を持っていて、さらに直接関連した応用も存在する。三角関数との類似性も便利で、sin に対応する関数を sn と表記する。実用的な問題にはヴァイエルシュトラスの楕円函数よりもヤコビの楕円関数のほうがよく用いられる。これは複素解析の概念を使わずに定義し考察できるからである。これらの関数はCarl Gustav Jakob Jacobiにより導入された。 (ja) In matematica, le funzioni ellittiche di Jacobi costituiscono una famiglia di funzioni ellittiche basilari che sono state introdotte dal matematico tedesco Carl Gustav Jakob Jacobi intorno al 1830. Esse e le funzioni theta (queste con ruoli ausiliari) hanno importanza storica e presentano molte caratteristiche che contribuiscono a far emergere un'importante struttura; inoltre hanno diretta rilevanza per talune applicazioni, ad esempio per le equazioni del pendolo. Esse inoltre presentano utili analogie con le funzioni trigonometriche, come rivelato dalla scelta della notazione sn per una funzione associabile alla funzione sin. Oggi sappiamo che le funzioni ellittiche di Jacobi non sono gli strumenti più semplici per lo sviluppo di una teoria generale, come si vede anche nell'attuale articolo: strumenti migliori sono le funzioni ellittiche di Weierstrass. Le funzioni di Jacobi presentano comunque vari motivi di interesse. (it) Funkcje eliptyczne Jacobiego – funkcje eliptyczne ( funkcje meromorficzne) zdefiniowane przez Carla Jacobiego, wykazujące pewne podobieństwo do funkcji trygonometrycznych. (pl) Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам (например, уравнение маятника). Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля. (ru) As funções elípticas de Jacobi, introduzidas pelo matemático prussiano Carl Gustav Jakob Jacobi por volta de 1830, são um conjunto de funções elípticas e funções teta, que tem importância histórica, além de possuirem várias aplicações (como na solução da equação do pêndulo). As funções elípticas tem várias analogias com as funções trigonométricas, inclusive a notação (sn, cn, etc) tem analogia com a trigonometria (sin e cos). (pt) Еліптичні функції Якобі — набір основних еліптичних функцій комплексної змінної, і допоміжних тета-функцій, які мають велике історичне значення і пряме відношення до деяких прикладних задач (наприклад, рівняння маятника). Вони також мають корисні аналогії з тригонометричними функціями, як показує відповідне позначення для . Вони не дають найпростіший спосіб розвинути загальну теорію еліптичних функцій, тому в у вступних книгах вони менш популярні, ніж еліптичні функції Вейєрштраса. Еліптичні функції Якобі мають в основному паралелограмі по два простих полюси і два простих нуля. (uk) 在數學中,雅可比橢圓函數是由卡爾·雅可比在1830年左右研究的一類橢圓函數。這類函數可用於擺之類的應用問題,並具有與三角函數相似的性質。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/JacobiFunctionAbstract.png?width=300
dbo:wikiPageExternalLink https://archive.org/details/fundamentanovat00jacogoog https://archive.org/details/applicationselli00greerich https://archive.org/details/lecturestheorell00hancrich http://gallica.bnf.fr/notice%3FN=FRBNF30162167 http://gallica.bnf.fr/notice%3FN=FRBNF37258233 http://gallica.bnf.fr/notice%3FN=FRBNF37258241 http://gallica.bnf.fr/notice%3FN=FRBNF37258245 http://gallica.bnf.fr/notice%3FN=FRBNF37258246 https://archive.org/details/117736039 https://archive.org/details/principestheorie00apperich https://archive.org/details/traitedesfonctio01halprich https://archive.org/details/traitedesfonctio02halprich https://archive.org/details/traitedesfonctio03halprich
dbo:wikiPageID 450004 (xsd:integer)
dbo:wikiPageLength 67528 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1120608329 (xsd:integer)
dbo:wikiPageWikiLink dbr:Carl_Friedrich_Gauss dbr:Quadric dbr:Roger_Apéry dbr:Schwarz–Christoffel_mapping dbr:Meromorphic_function dbr:Anharmonic_group dbr:Derivative dbr:Alfred_George_Greenhill dbr:Hyperbolic_functions dbr:Pendulum dbr:Pendulum_(mathematics) dbr:Pendulum_(mechanics) dbr:Peirce_quincuncial_projection dbr:Zeros_and_poles dbr:Complex_plane dbr:Conic_section dbr:Continued_fraction dbr:Analytic_continuation dbr:Analytic_function dbr:Mathematics dbr:Elliptic_filter dbr:Elliptic_function dbr:National_Astronomical_Observatory_of_Japan dbr:Neighbourhood_(mathematics) dbr:Nome_(mathematics) dbr:Ellipse dbr:Elliptic_Integral dbr:Elliptic_curve dbr:Elliptic_integral dbr:G._N._Watson dbr:Generating_function dbr:Branch_point dbr:Modular_group dbr:Theta_function dbr:Lemniscate_elliptic_functions dbr:Complex_torus dbr:Torus dbr:Trigonometry dbr:Lambert_series dbr:Landen's_transformation dbr:Adolf_Kneser dbr:Alfred_Cardew_Dixon dbr:E._T._Whittaker dbc:Jacobi_elliptic_functions dbr:Dihedral_group_of_order_6 dbr:Gudermannian_function dbr:Inverse_trigonometric_functions dbr:James_Whitbread_Lee_Glaisher dbr:Arithmetic-geometric_mean dbr:A_Course_of_Modern_Analysis dbr:Abel_elliptic_functions dbc:Elliptic_functions dbc:Special_functions dbr:Karl_Theodor_Wilhelm_Weierstrass dbr:Dixon_elliptic_functions dbr:Domain_coloring dbr:Map_projection dbr:Naum_Akhiezer dbr:Ordinary_differential_equation dbr:Carlson_symmetric_form dbr:Ramanujan_theta_function dbr:Neville_theta_functions dbr:Quarter_period dbr:Multivalued_function dbr:Meromorphic dbr:P._Appell dbr:Elliptic_modulus dbr:Christof_Gudermann dbr:Hermann_Amandus_Schwarz dbr:Neville_theta_function dbr:Complete_elliptic_integral_of_the_first_kind dbr:Louis_Melville_Milne-Thomson dbr:Modular_angle dbr:Weierstrass_elliptic_functions dbr:File:JacobiElliptic.HT.svg dbr:File:JacobiEllipticFunctions.svg dbr:File:JacobiFunctionAbstract.png dbr:File:Jacobi_Elliptic_Functions_(on_Jacobi_Ellipse).svg dbr:File:Jacobi_Elliptic_Functions_(on_Jacobi_Hyperbola).svg dbr:File:Modell_der_elliptischen_Funktion_...ine_Fläche_-Schilling_V,_1_-_317-.jpg
dbp:align center (en)
dbp:alt Elliptic Jacobi function , (en)
dbp:authorlink Carl Gustav Jakob Jacobi (en)
dbp:caption Jacobi elliptic function (en)
dbp:first William P. (en) Carl Gustav Jakob (en) Peter L. (en)
dbp:footer Plots of four Jacobi Elliptic Functions in the complex plane of , illustrating their double periodic behavior. Images generated using a version of the domain coloring method. All have values of equal to . (en)
dbp:id 22 (xsd:integer) p/j054050 (en)
dbp:image Ellipj-cn08.png (en) Ellipj-dn08.png (en) Ellipj-sc08.png (en) Ellipj-sn-08.png (en)
dbp:last Walker (en) Jacobi (en) Reinhardt (en)
dbp:title Jacobi elliptic functions (en) Jacobian Elliptic Functions (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:' dbt:Anchor dbt:Citation dbt:Citation_needed dbt:Clear dbt:ISBN dbt:In_lang dbt:MathWorld dbt:Multiple_image dbt:Reflist dbt:Rp dbt:Harvs dbt:AS_ref dbt:Dlmf
dbp:year 1829 (xsd:integer)
dct:subject dbc:Jacobi_elliptic_functions dbc:Elliptic_functions dbc:Special_functions
gold:hypernym dbr:Set
rdf:type yago:WikicatSpecialFunctions yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Relation100031921 yago:WikicatFunctionsAndMappings yago:WikicatEllipticFunctions
rdfs:comment Les funcions el·líptiques de Jacobi introduïdes pel matemàtic prussià Carl Gustav Jacob Jacobi al voltant de 1830 són un conjunt de funcions el·líptiques i , importants històricament, i tenen diverses aplicacions (com en la resolució de l'). Les funcions el·líptiques tenen diverses analogies amb les , incloent la notació (sn, cn , etc.) que té analogia amb les trigonomètriques ( sin i cos ). (ca) Eliptický integrál je v integrálním počtu jednou z řady příbuzných funkcí definovaných jako hodnoty určitých integrálů, které poprvé studovali Giulio Fagnano a Leonhard Euler okolo roku 1750. Jejich název pochází z toho, že původně vznikly v souvislosti s problémem nalezení délky oblouku elipsy. (cs) Las funciones elípticas de Jacobi son funciones definidas a partir de la integral elíptica de primera especie y aparecen en diversos contextos, deben su nombre al matemático alemán Carl Gustav Jakob Jacobi (1829). En física aparecen por ejemplo las oscilaciones de un péndulo con grandes amplitudes sometido a la gravedad, o el movimiento de una peonza asimétrica. (es) En mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi. (fr) 수학에서 야코비 타원함수(Jacobi楕圓函數, 영어: Jacobi elliptic function)는 세 개의 특수 함수 sn, cn, dn이다. 이들은 삼각함수와 유사한 항등식들을 만족시킨다. (ko) 数学において、ヤコビの楕円関数(ヤコビのだえんかんすう、英: Jacobi elliptic functions)とは、基本的な楕円関数の一群であり、追加でテータ関数を含むこともあり、歴史的に重要な関数からなる。これらの関数は重要な構造を持っていて、さらに直接関連した応用も存在する。三角関数との類似性も便利で、sin に対応する関数を sn と表記する。実用的な問題にはヴァイエルシュトラスの楕円函数よりもヤコビの楕円関数のほうがよく用いられる。これは複素解析の概念を使わずに定義し考察できるからである。これらの関数はCarl Gustav Jakob Jacobiにより導入された。 (ja) Funkcje eliptyczne Jacobiego – funkcje eliptyczne ( funkcje meromorficzne) zdefiniowane przez Carla Jacobiego, wykazujące pewne podobieństwo do funkcji trygonometrycznych. (pl) Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам (например, уравнение маятника). Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля. (ru) As funções elípticas de Jacobi, introduzidas pelo matemático prussiano Carl Gustav Jakob Jacobi por volta de 1830, são um conjunto de funções elípticas e funções teta, que tem importância histórica, além de possuirem várias aplicações (como na solução da equação do pêndulo). As funções elípticas tem várias analogias com as funções trigonométricas, inclusive a notação (sn, cn, etc) tem analogia com a trigonometria (sin e cos). (pt) Еліптичні функції Якобі — набір основних еліптичних функцій комплексної змінної, і допоміжних тета-функцій, які мають велике історичне значення і пряме відношення до деяких прикладних задач (наприклад, рівняння маятника). Вони також мають корисні аналогії з тригонометричними функціями, як показує відповідне позначення для . Вони не дають найпростіший спосіб розвинути загальну теорію еліптичних функцій, тому в у вступних книгах вони менш популярні, ніж еліптичні функції Вейєрштраса. Еліптичні функції Якобі мають в основному паралелограмі по два простих полюси і два простих нуля. (uk) 在數學中,雅可比橢圓函數是由卡爾·雅可比在1830年左右研究的一類橢圓函數。這類函數可用於擺之類的應用問題,並具有與三角函數相似的性質。 (zh) In der Mathematik ist eine Jacobische elliptische Funktion oder auch Jacobische Amplitudenfunktion eine von zwölf speziellen elliptischen Funktionen. Die Jacobischen elliptischen Funktionen haben einige Analogien zu den trigonometrischen Funktionen und finden zahlreiche Anwendungen in der mathematischen Physik, bei elliptischen Filtern und in der Geometrie, insbesondere für die Pendelgleichung und die Bogenlänge einer Ellipse. Carl Gustav Jakob Jacobi führte sie um 1830 ein. Carl Friedrich Gauß hatte jedoch schon 1796 mit dem lemniskatischen Sinus und Kosinus zwei spezielle Jacobische Funktionen untersucht, seine Notizen darüber aber nicht veröffentlicht. Für die allgemeine Theorie der elliptischen Funktionen spielen heute jedoch weniger die Jacobischen als vielmehr die Weierstraßschen ell (de) In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedri (en) In matematica, le funzioni ellittiche di Jacobi costituiscono una famiglia di funzioni ellittiche basilari che sono state introdotte dal matematico tedesco Carl Gustav Jakob Jacobi intorno al 1830. Esse e le funzioni theta (queste con ruoli ausiliari) hanno importanza storica e presentano molte caratteristiche che contribuiscono a far emergere un'importante struttura; inoltre hanno diretta rilevanza per talune applicazioni, ad esempio per le equazioni del pendolo. Esse inoltre presentano utili analogie con le funzioni trigonometriche, come rivelato dalla scelta della notazione sn per una funzione associabile alla funzione sin. Oggi sappiamo che le funzioni ellittiche di Jacobi non sono gli strumenti più semplici per lo sviluppo di una teoria generale, come si vede anche nell'attuale artico (it)
rdfs:label Jacobi elliptic functions (en) Funcions el·líptiques de Jacobi (ca) Eliptické integrály (cs) Jacobische elliptische Funktion (de) Función elíptica de Jacobi (es) Fonction elliptique de Jacobi (fr) Funzioni ellittiche di Jacobi (it) 야코비 타원함수 (ko) ヤコビの楕円関数 (ja) Funkcje eliptyczne Jacobiego (pl) Эллиптические функции Якоби (ru) Funções elípticas de Jacobi (pt) Еліптичні функції Якобі (uk) 雅可比橢圓函數 (zh)
owl:sameAs freebase:Jacobi elliptic functions yago-res:Jacobi elliptic functions wikidata:Jacobi elliptic functions dbpedia-ca:Jacobi elliptic functions dbpedia-cs:Jacobi elliptic functions dbpedia-de:Jacobi elliptic functions dbpedia-es:Jacobi elliptic functions dbpedia-fi:Jacobi elliptic functions dbpedia-fr:Jacobi elliptic functions dbpedia-it:Jacobi elliptic functions dbpedia-ja:Jacobi elliptic functions dbpedia-ko:Jacobi elliptic functions dbpedia-pl:Jacobi elliptic functions dbpedia-pt:Jacobi elliptic functions dbpedia-ru:Jacobi elliptic functions dbpedia-sr:Jacobi elliptic functions dbpedia-uk:Jacobi elliptic functions dbpedia-zh:Jacobi elliptic functions https://global.dbpedia.org/id/UcLV
prov:wasDerivedFrom wikipedia-en:Jacobi_elliptic_functions?oldid=1120608329&ns=0
foaf:depiction wiki-commons:Special:FilePath/Ellipj-cn08.png wiki-commons:Special:FilePath/Ellipj-dn08.png wiki-commons:Special:FilePath/Ellipj-sc08.png wiki-commons:Special:FilePath/Ellipj-sn-08.png wiki-commons:Special:FilePath/JacobiElliptic.HT.svg wiki-commons:Special:FilePath/JacobiEllipticFunctions.svg wiki-commons:Special:FilePath/JacobiFunctionAbstract.png wiki-commons:Special:FilePath/Jacobi_Elliptic_Functions_(on_Jacobi_Ellipse).svg wiki-commons:Special:FilePath/Jacobi_Elliptic_Functions_(on_Jacobi_Hyperbola).svg wiki-commons:Special:FilePath/am_(u,_k)_durch_eine_Fläche_-Schilling_V,_1_-_317-.jpg
foaf:isPrimaryTopicOf wikipedia-en:Jacobi_elliptic_functions
is dbo:knownFor of dbr:Adolf_Kneser
is dbo:nonFictionSubject of dbr:Fundamenta_nova_theoriae_functionum_ellipticarum
is dbo:wikiPageDisambiguates of dbr:Jacobi
is dbo:wikiPageRedirects of dbr:Amplitude_(Jacobi) dbr:Nc_(elliptic_function) dbr:Nd_(elliptic_function) dbr:Ns_(elliptic_function) dbr:Arccn dbr:Arcdn dbr:Arcsn dbr:Dc_(elliptic_function) dbr:Inverse_Jacobi_elliptic_functions dbr:Jacobi_amplitude dbr:Jacobi_delta_amplitude dbr:Jacobi_elliptic_cosine dbr:Jacobi_elliptic_sine dbr:Elliptic_cosine dbr:Elliptic_sine dbr:Cosinus_amplitudinis dbr:Cs_(elliptic_function) dbr:Delta_amplitude dbr:Delta_amplitudinis dbr:Dn_(elliptic_function) dbr:Ds_(elliptic_function) dbr:Am_(elliptic_function) dbr:Cd_(elliptic_function) dbr:Cn_(elliptic_function) dbr:Sc_(elliptic_function) dbr:Sd_(elliptic_function) dbr:Sn_(elliptic_function) dbr:Sinus_amplitudinis dbr:Pg_(elliptic_function) dbr:Jacobi's_elliptic_functions dbr:Elliptic_functions_(Jacobi) dbr:Jacobi_Elliptic_Function dbr:Jacobi_Sine_Function dbr:Jacobi_elliptic_function dbr:Jacobi_sine_function dbr:Jacobian_elliptic_function dbr:Jacobian_elliptic_functions dbr:Jacobian_function
is dbo:wikiPageWikiLink of dbr:Amplitude_(Jacobi) dbr:Rogers–Ramanujan_continued_fraction dbr:Nc_(elliptic_function) dbr:Nd_(elliptic_function) dbr:Ns_(elliptic_function) dbr:Arccn dbr:Arcdn dbr:Arcsn dbr:Dc_(elliptic_function) dbr:Doubly_periodic_function dbr:Inverse_Jacobi_elliptic_functions dbr:Jacobi_amplitude dbr:Jacobi dbr:Jacobi_delta_amplitude dbr:Jacobi_elliptic_cosine dbr:Jacobi_elliptic_sine dbr:Peirce_quincuncial_projection dbr:Elliptic_cosine dbr:Elliptic_filter dbr:Elliptic_function dbr:Elliptic_sine dbr:Zolotarev_polynomials dbr:Cnoidal_wave dbr:Elliptic_integral dbr:Fundamenta_nova_theoriae_functionum_ellipticarum dbr:Cosinus_amplitudinis dbr:Cs_(elliptic_function) dbr:Lemniscate_elliptic_functions dbr:Delta_amplitude dbr:Delta_amplitudinis dbr:Weierstrass_elliptic_function dbr:Dn_(elliptic_function) dbr:Ds_(elliptic_function) dbr:Abramowitz_and_Stegun dbr:Adolf_Kneser dbr:Am_(elliptic_function) dbr:Padé_approximant dbr:Cd_(elliptic_function) dbr:Edward_Neuman dbr:Gudermannian_function dbr:Jeffery–Hamel_flow dbr:Arithmetic–geometric_mean dbr:Abel_elliptic_functions dbr:Jewish_culture dbr:L._M._Milne-Thomson dbr:Cn_(elliptic_function) dbr:Dixon_elliptic_functions dbr:Sc_(elliptic_function) dbr:Sd_(elliptic_function) dbr:Sn_(elliptic_function) dbr:Neville_theta_functions dbr:List_of_things_named_after_Carl_Gustav_Jacob_Jacobi dbr:Sinus_amplitudinis dbr:Pg_(elliptic_function) dbr:Jacobi's_elliptic_functions dbr:Elliptic_functions_(Jacobi) dbr:Jacobi_Elliptic_Function dbr:Jacobi_Sine_Function dbr:Jacobi_elliptic_function dbr:Jacobi_sine_function dbr:Jacobian_elliptic_function dbr:Jacobian_elliptic_functions dbr:Jacobian_function
is dbp:knownFor of dbr:Adolf_Kneser
is dbp:subject of dbr:Fundamenta_nova_theoriae_functionum_ellipticarum
is foaf:primaryTopic of wikipedia-en:Jacobi_elliptic_functions