Monodromy theorem (original) (raw)

Property Value
dbo:abstract Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de) In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. Before stating this theorem it is necessary to define analytic continuation along a curve and study its properties. (en) Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr) Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru)
dbo:thumbnail wiki-commons:Special:FilePath/Analytic_continuation_along_a_curve.png?width=300
dbo:wikiPageExternalLink http://mathworld.wolfram.com/MonodromyTheorem.html https://archive.org/details/analysismathemat0000trie https://encyclopediaofmath.org/wiki/Monodromy_theorem
dbo:wikiPageID 10530074 (xsd:integer)
dbo:wikiPageLength 8333 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1009077925 (xsd:integer)
dbo:wikiPageWikiLink dbr:Holomorphic_function dbr:Complex_analysis dbr:Complex_logarithm dbr:Continuous_function dbr:Analytic_continuation dbr:MathWorld dbr:Monodromy dbr:Intersection_(set_theory) dbc:Theorems_in_complex_analysis dbr:Encyclopaedia_of_Mathematics dbr:Open_disk dbr:Simply-connected_set dbr:File:Imaginary_log_analytic_continuation.png dbr:File:Analytic_continuation_along_a_curve.png dbr:File:Homotopy_with_fixed_endpoints.png
dbp:title Monodromy theorem (en)
dbp:urlname MonodromyTheorem (en)
dbp:wikiPageUsesTemplate dbt:Cite_book dbt:PlanetMath
dct:subject dbc:Theorems_in_complex_analysis
rdf:type yago:WikicatTheoremsInComplexAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de) Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr) Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru) In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. (en)
rdfs:label Monodromiesatz (de) Théorème de monodromie (fr) Monodromy theorem (en) Теорема о монодромии (ru)
owl:sameAs freebase:Monodromy theorem yago-res:Monodromy theorem wikidata:Monodromy theorem dbpedia-de:Monodromy theorem dbpedia-fr:Monodromy theorem dbpedia-ru:Monodromy theorem https://global.dbpedia.org/id/48GEf
prov:wasDerivedFrom wikipedia-en:Monodromy_theorem?oldid=1009077925&ns=0
foaf:depiction wiki-commons:Special:FilePath/Imaginary_log_analytic_continuation.png wiki-commons:Special:FilePath/Analytic_continuation_along_a_curve.png wiki-commons:Special:FilePath/Homotopy_with_fixed_endpoints.png
foaf:isPrimaryTopicOf wikipedia-en:Monodromy_theorem
is dbo:wikiPageRedirects of dbr:Analytic_continuation_along_a_curve
is dbo:wikiPageWikiLink of dbr:Schwarz_triangle dbr:Algebraic_function dbr:Complex_analysis dbr:Monodromy dbr:List_of_theorems dbr:Modular_lambda_function dbr:Analytic_continuation_along_a_curve
is foaf:primaryTopic of wikipedia-en:Monodromy_theorem