dbo:abstract |
Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de) In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. Before stating this theorem it is necessary to define analytic continuation along a curve and study its properties. (en) Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr) Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru) |
dbo:thumbnail |
wiki-commons:Special:FilePath/Analytic_continuation_along_a_curve.png?width=300 |
dbo:wikiPageExternalLink |
http://mathworld.wolfram.com/MonodromyTheorem.html https://archive.org/details/analysismathemat0000trie https://encyclopediaofmath.org/wiki/Monodromy_theorem |
dbo:wikiPageID |
10530074 (xsd:integer) |
dbo:wikiPageLength |
8333 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1009077925 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Holomorphic_function dbr:Complex_analysis dbr:Complex_logarithm dbr:Continuous_function dbr:Analytic_continuation dbr:MathWorld dbr:Monodromy dbr:Intersection_(set_theory) dbc:Theorems_in_complex_analysis dbr:Encyclopaedia_of_Mathematics dbr:Open_disk dbr:Simply-connected_set dbr:File:Imaginary_log_analytic_continuation.png dbr:File:Analytic_continuation_along_a_curve.png dbr:File:Homotopy_with_fixed_endpoints.png |
dbp:title |
Monodromy theorem (en) |
dbp:urlname |
MonodromyTheorem (en) |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:PlanetMath |
dct:subject |
dbc:Theorems_in_complex_analysis |
rdf:type |
yago:WikicatTheoremsInComplexAnalysis yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment |
Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de) Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr) Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru) In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. (en) |
rdfs:label |
Monodromiesatz (de) Théorème de monodromie (fr) Monodromy theorem (en) Теорема о монодромии (ru) |
owl:sameAs |
freebase:Monodromy theorem yago-res:Monodromy theorem wikidata:Monodromy theorem dbpedia-de:Monodromy theorem dbpedia-fr:Monodromy theorem dbpedia-ru:Monodromy theorem https://global.dbpedia.org/id/48GEf |
prov:wasDerivedFrom |
wikipedia-en:Monodromy_theorem?oldid=1009077925&ns=0 |
foaf:depiction |
wiki-commons:Special:FilePath/Imaginary_log_analytic_continuation.png wiki-commons:Special:FilePath/Analytic_continuation_along_a_curve.png wiki-commons:Special:FilePath/Homotopy_with_fixed_endpoints.png |
foaf:isPrimaryTopicOf |
wikipedia-en:Monodromy_theorem |
is dbo:wikiPageRedirects of |
dbr:Analytic_continuation_along_a_curve |
is dbo:wikiPageWikiLink of |
dbr:Schwarz_triangle dbr:Algebraic_function dbr:Complex_analysis dbr:Monodromy dbr:List_of_theorems dbr:Modular_lambda_function dbr:Analytic_continuation_along_a_curve |
is foaf:primaryTopic of |
wikipedia-en:Monodromy_theorem |