Holomorphic function (original) (raw)

About DBpedia

هذا المقال يتحدث بشكل عام على الدوال التحليلية ذات القيم الحقيقية أو العقدية. للحديث عن الدوال ذات القيم العقدية بشكل خاص، انظر إلى دالة تامة الشكل. في الرياضيات، دالة تحليلية (بالإنجليزية: Analytic function)‏ هي دالة رياضية يمكن أن يُعبر عنها محليا بواسطة متسلسلة قوى متقاربة. عند الحديث عن دالة تحليلية، قد يُقصد دالة تحليلية حقيقية وقد يُقصد دالة تحليلية عقدية (أي قيمها أعداد عقدية) فمثلا يُقال عن الدالة (f(x أنها دالة تحليلية في النقطة x0 ، إذا أمكن تمثيل (f(x بمتسلسلة تايلور لقوى (x - x0).

thumbnail

Property Value
dbo:abstract هذا المقال يتحدث بشكل عام على الدوال التحليلية ذات القيم الحقيقية أو العقدية. للحديث عن الدوال ذات القيم العقدية بشكل خاص، انظر إلى دالة تامة الشكل. في الرياضيات، دالة تحليلية (بالإنجليزية: Analytic function)‏ هي دالة رياضية يمكن أن يُعبر عنها محليا بواسطة متسلسلة قوى متقاربة. عند الحديث عن دالة تحليلية، قد يُقصد دالة تحليلية حقيقية وقد يُقصد دالة تحليلية عقدية (أي قيمها أعداد عقدية) فمثلا يُقال عن الدالة (f(x أنها دالة تحليلية في النقطة x0 ، إذا أمكن تمثيل (f(x بمتسلسلة تايلور لقوى (x - x0). (ar) Una funció analítica és una funció que pot ser expressada localment com una sèrie de potències enteres convergent. En anàlisi complexa, les funcions holomorfes són analítiques. (ca) Les funcions holomorfes són l'objecte central d'estudi de l'anàlisi complexa; són funcions definides en un subconjunt obert del pla complex amb valors a que són complexament diferenciables en tots els punts. Això és una condició molt més forta que la diferenciabilitat real i implica que la funció és infinitament diferenciable i es pot descriure per la seva sèrie de Taylor. El terme funció analítica és utilitzat sovint com a sinònim de "funció holomorfa". Una funció que és holomorfa en tot el pla complex s'anomena funció entera. La frase "holomorfa en un punt a" significa que no només és diferenciable en a, sinó que és diferenciable en tot un disc obert centrat en a en el pla complex. Biholomorfa és una funció holomorfa bijectiva amb una funció inversa també holomorfa. La paraula "holomorfa" deriva del grec "holos" que significa "sencer" i "morphe" que significa "forma" o "aparença". (ca) Analytická funkce je funkce, kterou lze na okolí každého bodu vyjádřit jako součet mocninné řady. Pro funkci to znamená na okolí bodu , kde je libovolný bod . Uvedená řada je tedy konvergentní pro všechna z okolí bodu . Analytické funkce mohou být reálné, ale také komplexní. Všechny holomorfní funkce jsou analytické. (cs) Holomorfní funkce jsou důležitým pojmem komplexní analýzy. Jsou to komplexní funkce definované na otevřených podmnožinách komplexní roviny C takové, že jsou komplexně diferencovatelné. Diferencovatelnost v komplexních číslech je silnější požadavek než v číslech reálných a implikuje fakt, že daná funkce je nekonečně diferencovatelná a rozvinutelná do Taylorovy řady. Výraz „holomorfní funkce“ bývá často zaměňován s pojmem funkce analytická, ačkoliv tento výraz má i jiné významy. Funkce holomorfní na celé komplexní rovině se označuje jako celá. (cs) في الرياضيات، تعد الدوال التامة الشكل مركزية في دراسة التحليل العقدي. دالة تامة الشكل (بالإنجليزية: Holomorphic function)‏ هي دالة عقدية معرفة في ، يشترط فيها أن تكون قابلة للتفاضل في ما لأي نقطة من مجموعة انطلاقها. (ar) In der Mathematik sind holomorphe Funktionen (von altgriechisch ὅλος holos „ganz, vollständig“ und μορφή morphē „Form, Gestalt“) komplexwertige Funktionen (Abbildungen von komplexen Zahlen in komplexe Zahlen), die in der Funktionentheorie, einem Teilgebiet der Mathematik, untersucht werden. Eine komplexwertige Funktion mit Definitionsbereich heißt holomorph, falls sie an jeder Stelle von komplex differenzierbar ist. Die aus der Schulmathematik bekannten Rechenregeln zum Ableiten vormals reeller Funktionen gelten dabei weiterhin für komplexe Funktionen, obgleich der Holomorphiebegriff viel weitreichendere Konsequenzen nach sich zieht. Anschaulich bedeutet Holomorphie, dass sich die betroffene Funktion an jeder Stelle „fast“ wie eine aus mathematischer Sicht leicht zu verstehende (komplexwertige) lineare Funktion verhält. Erstmals eingeführt und studiert wurden holomorphe Funktionen im 19. Jahrhundert von Augustin-Louis Cauchy, Bernhard Riemann und Karl Weierstraß, obgleich sich die Terminologie der Holomorphie erst im 20. Jahrhundert flächendeckend durchsetzte. Besonders in älterer Literatur werden solche Funktionen auch „regulär“ genannt. Aufgrund ihrer breiten Anwendungsmöglichkeiten zählen sie zu den wichtigsten Funktionstypen innerhalb der Mathematik. Durch die Möglichkeit der Linearisierung in jedem Punkt ihres Definitionsbereichs können für holomorphe Funktionen , wobei die Menge der komplexen Zahlen bezeichnet, sehr fruchtbare Resultate hervorgebracht werden. Anschaulich kann die mathematische Rechenvorschrift in der Nähe jedes Wertes ihres Definitionsbereichs sehr gut durch die lineare Funktion angenähert werden. Die Annäherung ist dabei so gut, dass sie für die lokale Analyse der Funktion bzw. der Rechenvorschrift ausreicht. Das Symbol bezeichnet dabei die komplexe Ableitung von in . Auch wenn diese Definition analog zur reellen Differenzierbarkeit ist, zeigt sich in der Funktionentheorie, dass die Holomorphie eine sehr starke Eigenschaft ist. Sie produziert eine Vielzahl von Phänomenen, die im Reellen kein Pendant besitzen. Beispielsweise ist jede holomorphe Funktion bereits beliebig oft differenzierbar und lässt sich lokal in jedem Punkt in eine Potenzreihe entwickeln. Das bedeutet, dass man die betreffende Funktion in ihrem Definitionsbereich lokal durch Polynome annähern kann, also unter Verwendung nur der vier Grundrechenarten, wobei zur Konstruktion dieser Polynome nur die Ableitungen der Funktion in einem einzigen Punkt, dem Entwicklungspunkt, benötigt werden. Besonders bei transzendenten holomorphen Funktionen, wie Exponentialfunktionen, trigonometrischen Funktionen (etwa Sinus und Kosinus) und Logarithmen, aber auch bei Wurzelfunktionen, ist dies eine sehr nützliche Eigenschaft, etwa dann, wenn man diese Funktionen und ihre Ableitungen im Entwicklungspunkt gut versteht. Dabei ist zu beachten, dass die genannten Funktionen natürliche Fortsetzungen von den reellen in die komplexen Zahlen besitzen. Hintergrund der Begriffsstärke der Holomorphie ist, dass die Differenzierbarkeit im Komplexen auf einer offenen „Fläche“ statt nur einem offenen Intervall gelten muss. Dabei müssen beim Grenzübergang zum Differentialquotienten unendlich viele Richtungen (alle Kombinationen aus Nord, Ost, West und Süd) betrachtet werden – eine höhere Anforderung als nur die beiden Richtungen „positiv“ und „negativ“ auf dem reellen Zahlenstrahl. Im Laufe des 19. und 20. Jahrhunderts wurde darauf aufbauend im Rahmen der Funktionentheorie ein eigener Rechenkalkül für holomorphe Funktionen entwickelt. Während Begriffe wie Ableitung, Differenzenquotient und Integral weiterhin existieren, kommen zusätzliche Eigenschaften zum Tragen. Dies betrifft das Abbildungsverhalten holomorpher Funktionen, zusätzliche Techniken in der Integrationstheorie oder auch das Konvergenzverhalten von Funktionenfolgen. In vielen Teilgebieten der Mathematik bedient man sich der starken Eigenschaften holomorpher Funktionen, um Probleme zu lösen. Beispiele sind die analytische Zahlentheorie, in der über holomorphe Funktionen auf Zahlen rückgeschlossen wird, sowie die komplexe Geometrie oder auch die theoretische Physik. Besonders im Rahmen der Theorie der Modulformen nehmen holomorphe Funktionen eine wichtige Position ein, wobei tiefe Verbindungen zur Darstellungstheorie und zu elliptischen Kurven aufgebaut werden können. Gleich zwei Millennium-Probleme der Mathematik, die Vermutung von Birch und Swinnerton-Dyer und die Riemannsche Vermutung, drehen sich um das Nullstellenverhalten gewisser holomorpher Funktionen. (de) Στα μαθηματικά, μια αναλυτική συνάρτηση είναι μια συνάρτηση που τοπικά δίνεται από μια συγκλίνουσα δυναμοσειρά. Οι αναλυτικές συναρτήσεις χωρίζονται σε πραγματικές και μιγαδικές. Μια συνάρτηση είναι αναλυτική αν και μόνο αν είναι ίση με μια σειρά Taylor σε κάποια γειτονιά για κάθε σημείο. Απλό παράδειγμα αναλυτικών συναρτήσεων μιας μεταβλητής είναι τα πολυώνυμα. Κάθε πολυώνυμο (πραγματικό ή μιγαδικό) είναι μια αναλυτική συνάρτηση. Αναλυτικές συναρτήσεις είναι επίσης η εκθετική συνάρτηση, η λογαριθμική συνάρτηση και οι τριγωνομετρικές συναρτήσεις. (el) Als analytisch bezeichnet man in der Mathematik eine Funktion, die lokal durch eine konvergente Potenzreihe gegeben ist. Aufgrund der Unterschiede zwischen reeller und komplexer Analysis spricht man zur Verdeutlichung oft auch explizit von reell-analytischen oder komplex-analytischen Funktionen. Im Komplexen sind die Eigenschaften analytisch und holomorph äquivalent. Ist eine Funktion in der gesamten komplexen Ebene definiert und analytisch, nennt man sie ganz. (de) Στα μαθηματικά, οι ολόμορφες συναρτήσεις είναι τα βασικά αντικείμενα μελέτης στην μιγαδική ανάλυση. Μια ολόμορφη συνάρτηση είναι μια μιγαδική συνάρτηση μιας ή περισσότερων μιγαδικών μεταβλητών που είναι μιγαδικά παραγωγίσιμη σε κάθε σημείο μιας περιοχής του της. Η ύπαρξη μιας μιγαδικής παραγώγου σε μια περιοχή τιμών είναι πολύ σημαντική, γιατί υποδηλώνει ότι κάθε ολόμορφη συνάρτηση είναι στην πραγματικότητα απείρως διαφορίσιμη και ίση με τη δική της σειρά Taylor. Ο όρος αναλυτική συνάρτηση συχνά χρησιμοποιείται αντί του "ολόμορφη συνάρτηση", αν και ο όρος "αναλυτική" χρησιμοποιείται επίσης με την ευρύτερη έννοια για να περιγράψει οποιαδήποτε συνάρτηση (πραγματική, μιγαδική, ή πιο γενικού τύπου) που μπορεί να γραφτεί ως συγκλίνουσα δυναμοσειρά γύρω από κάθε σημείο του πεδίου ορισμού της. Το γεγονός ότι όλες οι ολόμορφες συναρτήσεις είναι μιγαδικές αναλυτικές συναρτήσεις, και αντιστρόφως, είναι ένα σημαντικό θεώρημα στη μιγαδική ανάλυση. Οι ολόμορφες συναρτήσεις αναφέρονται επίσης, μερικές φορές, ως αναλυτικές συναρτήσεις ή ως σύμορφη απεικόνιση. Μία ολόμορφη συνάρτηση της οποίας το πεδίο ορισμού είναι όλο το μιγαδικό επίπεδο ονομάζεται μια ακέραια συνάρτηση. Η φράση "ολόμορφη σε ένα σημείο z0" σημαίνει όχι μόνο παραγωγήσιμη στο z0, αλλά παραγωγίσιμη παντού μέσα σε κάποια περιοχή του z0 στο μιγαδικό επίπεδο. (el) En kompleksa analitiko, holomorfa funkcio aŭ holomorfio estas kompleksvalora funkcio sur subaro de kompleksa ebeno (aŭ pli ĝenerale kompleksa sternaĵo), kiu estas derivebla kaj analitika en la kompleksa senco. Pri reelaj funkcioj, la koncepto de deriveblo kaj analitikeco estas tre malsamaj; tamen por kompleksaj funkcioj la du konceptoj estas samampleksaj. (eo) In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis. Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as regular functions. A holomorphic function whose domain is the whole complex plane is called an entire function. The phrase "holomorphic at a point z0" means not just differentiable at z0, but differentiable everywhere within some neighbourhood of z0 in the complex plane. (en) En matemáticas una función analítica es aquella que puede expresarse como una serie de potencias convergente. Una función analítica es suave si tiene infinitas derivadas. La noción de función analítica puede definirse para funciones reales o complejas, aunque ambos conjuntos tienen propiedades distintas. Las funciones complejas derivables en un abierto siempre son analíticas, y se denominan funciones holomorfas. Sin embargo, una función real infinitamente derivable no es necesariamente analítica. Cabe dejar constancia que las clases más importantes de funciones que ocurren en el análisis clásico y en sus aplicaciones a los problemas de mecánica y física, sean analíticas, salvo en algunos puntos singulares de estas funciones. (es) Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son funciones que se definen sobre un subconjunto del plano complejo y con valores en , que son complejo-diferenciables en algún entorno de un punto de su dominio. En este caso se dice que la función es holomorfa en ese punto.​ Si la función es holomorfa en cada punto de su dominio, se dice que es holomorfa en su dominio. Esta condición es mucho más fuerte que la diferenciabilidad en caso real e implica que la función es infinitamente diferenciable y que puede ser descrita mediante su serie de Taylor. El término función analítica se usa a menudo en vez del de "función holomorfa", especialmente para cuando se trata de la restricción a los números reales de una función holomorfa. Una función que sea holomorfa sobre todo el plano complejo se dice función entera. La frase "holomorfa en un punto a" significa no solo diferenciable en a, sino diferenciable en todo un disco abierto centrado en a, en el plano complejo. (es) En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe ℂ. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.Un fait remarquable en découle : les notions de fonction analytique complexe et de fonction holomorphe coïncident. Pour cette raison, les fonctions holomorphes constituent le pilier central de l'analyse complexe. (fr) En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle. En revanche, en analyse complexe, toute fonction simplement dérivable sur un ouvert est analytique et vérifie de nombreuses autres propriétés. Article détaillé : Fonction holomorphe. Qu'elle soit de variable réelle ou complexe, une fonction analytique sur un ouvert connexe et non identiquement nulle a ses zéros isolés. Cette propriété induit l'unicité du prolongement analytique sur tout ouvert connexe. (fr) 解析関数(かいせきかんすう、英: analytic function)とは、定義域の各点において解析的(収束冪級数で書ける)な関数のことである。場合により多少異なった意味でも用いられる。複素変数 z の複素数値関数 f(z) が1点 z = c で解析的 (analytic) であるとは、c の近傍で z − c の冪級数で表されることを云う。 (ja) 複素解析における正則関数(せいそくかんすう、英: regular analytic function)あるいは整型函数(せいけいかんすう、英: holomorphic function)とは、ガウス平面上あるいはリーマン面上のある領域について、常に微分可能な複素変数を指す。 (ja) In matematica, una funzione olomorfa (composizione delle parole greche "holos", tutto e "morphe", forma; in riferimento alla capacità della derivata di rimanere uguale a sé stessa nelle trasformazioni) è una funzione definita su un sottoinsieme aperto del piano dei numeri complessi con valori in che è differenziabile in senso complesso in ogni punto del dominio. Le funzioni olomorfe sono tra gli oggetti principali dell'analisi complessa. Si dimostra che possono essere scritte ovunque come serie di potenze convergenti. Detto in altri termini, sono funzioni analitiche, e il termine "funzione analitica" viene utilizzato come sinonimo di funzione olomorfa. La differenziabilità in senso complesso di una funzione complessa è una condizione molto più stringente della differenziabilità reale in quanto implica che la funzione sia infinite volte differenziabile e che possa essere completamente individuata dalla sua serie di Taylor. In alcuni testi le funzioni olomorfe (e le loro derivate) definite su un aperto sono dette funzioni analitiche. In tale contesto si definisce biolomorfismo fra due insiemi aperti di una funzione olomorfa che sia iniettiva, suriettiva, e la cui inversa è anch'essa olomorfa. (it) 수학에서 해석 함수(解析函數, 영어: analytic function)란 국소적으로(locally) 수렴하는 멱급수로 나타낼 수 있는 함수를 말한다. 함수 가 한 점 에서 해석적이라는 것은 그 점 근방에서의 테일러 급수가 수렴하는 것과 같은 의미이고, 정의역 의 모든 점에서 해석적인 함수를 해석함수라고 한다. 일반적으로 해석 함수는 실함수와 복소 함수의 경우로 나누어 생각하며, 복소 해석 함수는 실해석 함수에 비해 수학적으로 풍부한 성질을 갖는다. (ko) 복소해석학에서 정칙 함수(正則函數, 영어: holomorphic function)는 복소 함수에 대한, 미분 가능 함수와 해석 함수에 동시에 대응하는 개념이다. 실수 함수의 경우 미분 가능 함수의 개념은 해석 함수의 개념보다 훨씬 약하지만, 복소 함수의 경우 같은 개념에 대응한다. (ko) In matematica, una funzione analitica è una funzione localmente espressa da una serie di potenze convergente. Spesso il termine "funzione analitica" è utilizzato come sinonimo di funzione olomorfa, sebbene quest'ultimo si utilizzi più spesso per le funzioni complesse (tutte le funzioni olomorfe sono funzioni analitiche complesse e viceversa). Una funzione è analitica se e solo se, preso comunque un punto appartenente al dominio della funzione, esiste un suo intorno in cui la funzione coincide col suo sviluppo in serie di Taylor. Le funzioni analitiche possono essere viste come un ponte fra i polinomi e le funzioni generiche. Esistono le funzioni analitiche reali e le funzioni analitiche complesse: simili in alcuni aspetti, differenti in altri. Funzioni di questo tipo sono infinitamente derivabili, ma le funzioni analitiche complesse esibiscono proprietà che generalmente non appartengono alle funzioni analitiche reali. (it) Holomorfe functies (van het Griekse ὅλος (holos) dat geheel betekent) zijn het centrale onderwerp van studie binnen de complexe functietheorie, een deelgebied van de wiskunde. Holomorfe functies zijn functies die op een open deelverzameling van het complexe vlak zijn gedefinieerd met waarden in en die in ieder punt in dit definitiegebied als complexe functie kunnen worden gedifferentieerd. Dit is een veel sterkere conditie dan de reële differentieerbaarheid en houdt in dat de functie een gladde functie is, dus oneindig vaak kan worden gedifferentieerd. Cauchy heeft bewezen dat iedere holomorfe functie ook een analytische functie is. Dit is een belangrijke stelling uit de complexe functietheorie. Analytische functie en holomorfe functie worden daarom vaak door elkaar gebruikt. Een analytische functie is een functie die in de omgeving van, binnen een open schijf om ieder punt op zijn domein een taylorreeksontwikkeling heeft. Een functie die over het hele complexe vlak holomorf is, wordt ook een gehele functie genoemd. (nl) In de wiskunde is een analytische functie een functie die lokaal door een machtreeks kan worden benaderd die convergent is. Er zijn zowel reëelwaardige als complexwaardige analytische functies. Beide soorten functies kunnen weliswaar oneindig vaak worden gedifferentieerd, maar complexe hebben eigenschappen die niet algemeen voor reële gelden. Deze definitie komt er voor een functie in een punt mee overeen dat er een omgeving van is, waarin de taylorontwikkeling van convergeert. Het is voor complexwaardige functies hetzelfde dat zij analytisch of holomorf zijn. Een gehele functie is een complexwaardige fuctie die over het gehele complexe vlak analytisch, of wat hetzelfde is, holomorf is. Bronvermelding * Dit artikel of een eerdere versie ervan is een (gedeeltelijke) vertaling van het artikel Analytic function op de Engelstalige Wikipedia, dat onder de licentie Creative Commons Naamsvermelding/Gelijk delen valt. Zie de bewerkingsgeschiedenis aldaar. (nl) Funkcja holomorficzna – funkcja zespolona na otwartym podzbiorze płaszczyzny liczb zespolonych, która jest różniczkowalna w sensie zespolonym w każdym punkcie tego podzbioru. Funkcje holomorficzne to główny obiekt badań analizy zespolonej. Holomorficzność funkcji jest warunkiem dużo silniejszym niż różniczkowalność w sensie rzeczywistym, gdyż funkcja o tej własności jest nieskończenie wiele razy różniczkowalna, przez co może być przedstawiona za pomocą wzoru (szeregu) Taylora. (pl) Funkcja analityczna na zbiorze – funkcja dająca się rozwinąć w szereg Taylora w otoczeniu każdego punktu należącego do (pl) Em matemática, uma função analítica é uma função que pode ser localmente expandida em séries de Taylor. Grosseiramente falando, funções analíticas são uma família mais ampla que a das funções polinomiais mas que ainda preserva certas propriedades destes. Classicamente falando, existem funções analíticas reais e funções analíticas complexas. O desenvolvimento da análise funcional ao longo do século XX levou ao surgimento de teorias de funções analíticas que assumem valores em um espaço de Banach complexo arbitrário. (pt) Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения. Однозначная функция называется аналитической в точке , если сужение функции на некоторую окрестность является аналитической функцией.Если функция аналитична в точке , то она аналитическая в каждой точке некоторой окрестности точки . Однозначная аналитическая функция одной комплексной переменной — это функция , для которой в некоторой односвязной области , называемой областью аналитичности, выполняется одно из четырёх равносильных условий: 1. * Ряд Тейлора функции в каждой точке сходится, и его сумма равна (аналитичность в смысле Вейерштрасса). 2. * В каждой точке выполняются условия Коши — Римана и Здесь и — вещественная и мнимая части рассматриваемой функции. (Аналитичность в смысле Коши — Римана.) 3. * Интеграл для любой замкнутой кривой (аналитичность в смысле Коши). 4. * Функция является голоморфной в области . То есть комплексно дифференцируема в каждой точке . В курсе комплексного анализа доказывается эквивалентность этих определений. (ru) Analytiska funktioner (även komplexanalytiska funktioner eller holomorfa funktioner) studeras i den del av matematiken som kallas komplex analys. En komplexvärd funktion f av en komplex variabel z är analytisk i punkten z0 om dess komplexa derivata existerar för alla z i en omgivning av z0, där h är ett komplext tal. Detta kan tyckas vara en obetydlig förändring jämfört med definitionen på derivata, men innebär en mycket annorlunda teori jämfört med reell analys. Den är analytisk i ett område Ω i det komplexa talplanet om den är analytisk i varje punkt z i Ω. En funktion som är analytisk i hela det komplexa talplanet kallas hel funktion. Exempel på hela funktioner är * polynomfunktioner * * Exempel på kontinuerliga funktioner som inte är analytiska i någon punkt är * (absolutbeloppet av z). * (komplexkonjugatet av z). Enligt en sats ur komplexa analysen har varje analytisk funktion också analytisk derivata. Det medför att om en funktion har en derivata har den oändligt många derivator och kan utvecklas i potensserie i en öppen mängd kring alla punkter i definitionsmängden. Löst uttryckt innebär detta att analytiska funktioner med nödvändighet "uppför sig väl". Jämför med det reella fallet, där högre ordningars derivator inte behöver existera, även om en funktion är deriverbar. Varje analytisk funktion uppfyller Cauchy-Riemanns ekvationer. De enda hela begränsade funktionerna är enligt Liouvilles sats de konstanta funktionerna. Detta leder till ett koncist bevis för den viktiga algebrans fundamentalsats. Analytiska funktioner uppfyller Cauchys integralsats. Genom att betrakta "nästan" analytiska funktioner kan man visa Cauchys integralformel som är ett kraftfullt verktyg för beräkning av vissa integraler (exempelvis Fouriertransformen) vilket är svårt med andra metoder. Teorin har även kopplingar till icke-euklidisk geometri, särskilt via Möbiusavbildningar och konforma avbildningar. En teoretiskt mycket viktig egenskap, och ett av de elegantaste resultaten i hela teorin för analytiska funktioner av en komplex variabel, ges av Riemanns avbildningssats, som innebär att varje öppen enkelt sammanhängande mängd, skild från hela komplexa talplanet ℂ kan avbildas konformt till det inre av enhetscirkeln. Det betyder till exempel att man i princip alltid kan lösa Laplaces ekvation i ℂ och ℝ2. I modern forskning studerar man även där teorin skiljer sig åt betydligt jämfört med komplex analys i en variabel.[källa behövs] (sv) Funções holomorfas são o objeto central do estudo da análise complexa. Estas funções são definidas sobre um subconjunto aberto do plano complexo com valores em que são diferenciáveis em cada ponto. Esta condição é muito mais forte que a diferenciabilidade em caso real e implica que a função é infinitamente diferenciável e que pode ser descrita mediante sua série de Taylor. O termo função analítica é frequentemente usada no lugar de "função holomorfa", entretanto o termo "analítico" possui vários outros significados. Uma função que seja holomorfa sobre todo o plano complexo se diz função inteira. A frase "holomorfa em um ponto " significa não só diferenciável em , mas diferenciável em algum disco aberto centrado em , no plano complexo. (pt) Голоморфная функция или однозначная комплексная аналитическая функция (от греч. ὅλος — «весь, целый» и μορφή — «форма»), иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке. В отличие от вещественного случая, это условие означает, что функция бесконечно дифференцируема и может быть представлена сходящимся к ней рядом Тейлора. Голоморфные функции также называют иногда аналитическими, хотя второе понятие гораздо более широкое, так как аналитическая функция может быть многозначной, а также может рассматриваться и для вещественных чисел. (ru) Голомо́рфна фу́нкція — комплексна функція, визначена на відкритій підмножині комплексної площини , що має комплексну похідну в кожній точці цієї множини. Голоморфність функції є досить сильною умовою. На відміну від випадку дійсних функцій, голоморфність означає, що функція є нескінченно диференційовною і рівна сумі свого ряду Тейлора в околі кожної точки. В комплексному аналізі голоморфні функції також називають аналітичними і обидва терміни використовуються в літературі як синоніми. Проте поняття аналітичних функцій має зміст і для функцій дійсних змінних . Факт, що для комплексних функцій комплексної змінної множини голоморфних та аналітичних функцій є рівними є одним із головних результатів комплексного аналізу. (uk) 全纯函数(英語:Holomorphic function)是复分析研究的中心对象;它们是定义在复平面的开子集上的,在复平面中取值的,在每点上皆複可微的函数。全纯函数有时称为正则函数。在整个复平面上都全纯的函数称为整函数。在一点全纯,不仅表意味着可微,而且表示在某个中心为的复平面上的开邻域上可微。 (zh) Аналіти́чна фу́нкція — функція, яка збігається зі своїм рядом Тейлора в околі будь-якої точки області визначення. У випадку функції комплексної змінної ця властивість збігається із властивістю голоморфності. (uk) 在數學中,解析函数(英語:Analytic function)是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。两种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在上也可以定義解析函數,這套想法在當代數論與中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个点的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Conformal_map.svg?width=300
dbo:wikiPageID 14110 (xsd:integer)
dbo:wikiPageLength 23791 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123311748 (xsd:integer)
dbo:wikiPageWikiLink dbr:Principal_branch dbr:Product_rule dbr:Meromorphic_function dbr:Derivative dbc:Analytic_functions dbr:Antiderivative_(complex_analysis) dbr:Antiholomorphic_function dbr:Argument_(complex_analysis) dbr:Holomorphic_separability dbr:Jordan_curve_theorem dbr:Integral_domain dbr:Limit_of_a_function dbr:Multiplicative_inverse dbr:Zeros_and_poles dbr:Complement_(set_theory) dbr:Complex_analysis dbr:Complex_logarithm dbr:Complex_number dbr:Complex_plane dbr:Constant_function dbr:Analytic_function dbr:Mathematics dbr:Neighbourhood_(mathematics) dbr:Norm_(mathematics) dbr:Wirtinger_derivatives dbr:Quadrature_domains dbr:Quotient_rule dbr:Entire_function dbr:Function_of_several_complex_variables dbr:Gateaux_derivative dbr:Boundary_(topology) dbr:Conformal_map dbr:Real_function dbr:Locally_convex_topological_vector_space dbr:Loop_(topology) dbr:Biholomorphy dbr:Stokes'_theorem dbr:Commutative_ring dbr:Complex_conjugate dbr:Complex_differential_form dbr:Fréchet_derivative dbr:Functional_analysis dbr:Harmonic_conjugate dbr:Harmonic_morphism dbr:Plane_(geometry) dbr:Augustin-Louis_Cauchy dbr:Banach_space dbr:Cauchy's_integral_formula dbr:Cauchy–Riemann_equations dbr:Trigonometric_functions dbr:Domain_of_a_function dbr:Domain_of_holomorphy dbr:Absolute_value dbr:Curve_orientation dbr:Euler's_formula dbr:Exponential_function dbr:Exterior_derivative dbr:Osgood's_lemma dbr:Partial_differential_equation dbr:Cauchy's_integral_theorem dbr:Entire_functions dbr:Simply_connected_space dbr:Hartogs'_theorem dbr:Rational_function dbr:Harmonic_function dbr:Harmonic_map dbr:Taylor_series dbr:Chain_rule dbr:Charles_Auguste_Briot dbr:Laplace's_equation dbr:Suprema dbr:Coefficient dbr:Differentiable_function dbr:Disk_(mathematics) dbr:Domain_(mathematical_analysis) dbr:Polynomial dbr:Square_root dbr:Infinitely_differentiable_function dbr:Interior_(topology) dbr:Open_set dbr:Looman–Menchoff_theorem dbr:Complex-valued_function dbr:Linear_transformation dbr:Reinhardt_domain dbr:Meromorphic dbr:Square_integrable dbr:Jean-Claude_Bouquet dbr:Cauchy's_differentiation_formula dbr:Polydisk dbr:Contour_integral dbr:Rectifiable_path dbr:Compact_set dbr:Compact_subset dbr:Complex_vector_space dbr:Holomorphic_functions_are_analytic dbr:Wirtinger_derivative dbr:Wikt:μορφή dbr:Wikt:ὅλος dbr:File:Conformal_map.svg dbr:File:Non-holomorphic_complex_conjugate.svg dbr:Wikt:μέρος
dbp:id p/a012240 (en)
dbp:title Analytic function (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:! dbt:Authority_control dbt:Cite_book dbt:For dbt:Main_article dbt:Math dbt:Mvar dbt:Redirect-distinguish dbt:Reflist dbt:Short_description dbt:Use_American_English dbt:Complex_analysis_sidebar dbt:Px2 dbt:Abs
dct:subject dbc:Analytic_functions
gold:hypernym dbr:Objects
rdf:type owl:Thing yago:WikicatAnalyticFunctions yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Relation100031921 yago:WikicatFunctionsAndMappings dbo:Planet
rdfs:comment هذا المقال يتحدث بشكل عام على الدوال التحليلية ذات القيم الحقيقية أو العقدية. للحديث عن الدوال ذات القيم العقدية بشكل خاص، انظر إلى دالة تامة الشكل. في الرياضيات، دالة تحليلية (بالإنجليزية: Analytic function)‏ هي دالة رياضية يمكن أن يُعبر عنها محليا بواسطة متسلسلة قوى متقاربة. عند الحديث عن دالة تحليلية، قد يُقصد دالة تحليلية حقيقية وقد يُقصد دالة تحليلية عقدية (أي قيمها أعداد عقدية) فمثلا يُقال عن الدالة (f(x أنها دالة تحليلية في النقطة x0 ، إذا أمكن تمثيل (f(x بمتسلسلة تايلور لقوى (x - x0). (ar) Una funció analítica és una funció que pot ser expressada localment com una sèrie de potències enteres convergent. En anàlisi complexa, les funcions holomorfes són analítiques. (ca) Analytická funkce je funkce, kterou lze na okolí každého bodu vyjádřit jako součet mocninné řady. Pro funkci to znamená na okolí bodu , kde je libovolný bod . Uvedená řada je tedy konvergentní pro všechna z okolí bodu . Analytické funkce mohou být reálné, ale také komplexní. Všechny holomorfní funkce jsou analytické. (cs) Holomorfní funkce jsou důležitým pojmem komplexní analýzy. Jsou to komplexní funkce definované na otevřených podmnožinách komplexní roviny C takové, že jsou komplexně diferencovatelné. Diferencovatelnost v komplexních číslech je silnější požadavek než v číslech reálných a implikuje fakt, že daná funkce je nekonečně diferencovatelná a rozvinutelná do Taylorovy řady. Výraz „holomorfní funkce“ bývá často zaměňován s pojmem funkce analytická, ačkoliv tento výraz má i jiné významy. Funkce holomorfní na celé komplexní rovině se označuje jako celá. (cs) في الرياضيات، تعد الدوال التامة الشكل مركزية في دراسة التحليل العقدي. دالة تامة الشكل (بالإنجليزية: Holomorphic function)‏ هي دالة عقدية معرفة في ، يشترط فيها أن تكون قابلة للتفاضل في ما لأي نقطة من مجموعة انطلاقها. (ar) Στα μαθηματικά, μια αναλυτική συνάρτηση είναι μια συνάρτηση που τοπικά δίνεται από μια συγκλίνουσα δυναμοσειρά. Οι αναλυτικές συναρτήσεις χωρίζονται σε πραγματικές και μιγαδικές. Μια συνάρτηση είναι αναλυτική αν και μόνο αν είναι ίση με μια σειρά Taylor σε κάποια γειτονιά για κάθε σημείο. Απλό παράδειγμα αναλυτικών συναρτήσεων μιας μεταβλητής είναι τα πολυώνυμα. Κάθε πολυώνυμο (πραγματικό ή μιγαδικό) είναι μια αναλυτική συνάρτηση. Αναλυτικές συναρτήσεις είναι επίσης η εκθετική συνάρτηση, η λογαριθμική συνάρτηση και οι τριγωνομετρικές συναρτήσεις. (el) Als analytisch bezeichnet man in der Mathematik eine Funktion, die lokal durch eine konvergente Potenzreihe gegeben ist. Aufgrund der Unterschiede zwischen reeller und komplexer Analysis spricht man zur Verdeutlichung oft auch explizit von reell-analytischen oder komplex-analytischen Funktionen. Im Komplexen sind die Eigenschaften analytisch und holomorph äquivalent. Ist eine Funktion in der gesamten komplexen Ebene definiert und analytisch, nennt man sie ganz. (de) En kompleksa analitiko, holomorfa funkcio aŭ holomorfio estas kompleksvalora funkcio sur subaro de kompleksa ebeno (aŭ pli ĝenerale kompleksa sternaĵo), kiu estas derivebla kaj analitika en la kompleksa senco. Pri reelaj funkcioj, la koncepto de deriveblo kaj analitikeco estas tre malsamaj; tamen por kompleksaj funkcioj la du konceptoj estas samampleksaj. (eo) En matemáticas una función analítica es aquella que puede expresarse como una serie de potencias convergente. Una función analítica es suave si tiene infinitas derivadas. La noción de función analítica puede definirse para funciones reales o complejas, aunque ambos conjuntos tienen propiedades distintas. Las funciones complejas derivables en un abierto siempre son analíticas, y se denominan funciones holomorfas. Sin embargo, una función real infinitamente derivable no es necesariamente analítica. Cabe dejar constancia que las clases más importantes de funciones que ocurren en el análisis clásico y en sus aplicaciones a los problemas de mecánica y física, sean analíticas, salvo en algunos puntos singulares de estas funciones. (es) En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe ℂ. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.Un fait remarquable en découle : les notions de fonction analytique complexe et de fonction holomorphe coïncident. Pour cette raison, les fonctions holomorphes constituent le pilier central de l'analyse complexe. (fr) 解析関数(かいせきかんすう、英: analytic function)とは、定義域の各点において解析的(収束冪級数で書ける)な関数のことである。場合により多少異なった意味でも用いられる。複素変数 z の複素数値関数 f(z) が1点 z = c で解析的 (analytic) であるとは、c の近傍で z − c の冪級数で表されることを云う。 (ja) 複素解析における正則関数(せいそくかんすう、英: regular analytic function)あるいは整型函数(せいけいかんすう、英: holomorphic function)とは、ガウス平面上あるいはリーマン面上のある領域について、常に微分可能な複素変数を指す。 (ja) 수학에서 해석 함수(解析函數, 영어: analytic function)란 국소적으로(locally) 수렴하는 멱급수로 나타낼 수 있는 함수를 말한다. 함수 가 한 점 에서 해석적이라는 것은 그 점 근방에서의 테일러 급수가 수렴하는 것과 같은 의미이고, 정의역 의 모든 점에서 해석적인 함수를 해석함수라고 한다. 일반적으로 해석 함수는 실함수와 복소 함수의 경우로 나누어 생각하며, 복소 해석 함수는 실해석 함수에 비해 수학적으로 풍부한 성질을 갖는다. (ko) 복소해석학에서 정칙 함수(正則函數, 영어: holomorphic function)는 복소 함수에 대한, 미분 가능 함수와 해석 함수에 동시에 대응하는 개념이다. 실수 함수의 경우 미분 가능 함수의 개념은 해석 함수의 개념보다 훨씬 약하지만, 복소 함수의 경우 같은 개념에 대응한다. (ko) Funkcja holomorficzna – funkcja zespolona na otwartym podzbiorze płaszczyzny liczb zespolonych, która jest różniczkowalna w sensie zespolonym w każdym punkcie tego podzbioru. Funkcje holomorficzne to główny obiekt badań analizy zespolonej. Holomorficzność funkcji jest warunkiem dużo silniejszym niż różniczkowalność w sensie rzeczywistym, gdyż funkcja o tej własności jest nieskończenie wiele razy różniczkowalna, przez co może być przedstawiona za pomocą wzoru (szeregu) Taylora. (pl) Funkcja analityczna na zbiorze – funkcja dająca się rozwinąć w szereg Taylora w otoczeniu każdego punktu należącego do (pl) Em matemática, uma função analítica é uma função que pode ser localmente expandida em séries de Taylor. Grosseiramente falando, funções analíticas são uma família mais ampla que a das funções polinomiais mas que ainda preserva certas propriedades destes. Classicamente falando, existem funções analíticas reais e funções analíticas complexas. O desenvolvimento da análise funcional ao longo do século XX levou ao surgimento de teorias de funções analíticas que assumem valores em um espaço de Banach complexo arbitrário. (pt) Funções holomorfas são o objeto central do estudo da análise complexa. Estas funções são definidas sobre um subconjunto aberto do plano complexo com valores em que são diferenciáveis em cada ponto. Esta condição é muito mais forte que a diferenciabilidade em caso real e implica que a função é infinitamente diferenciável e que pode ser descrita mediante sua série de Taylor. O termo função analítica é frequentemente usada no lugar de "função holomorfa", entretanto o termo "analítico" possui vários outros significados. Uma função que seja holomorfa sobre todo o plano complexo se diz função inteira. A frase "holomorfa em um ponto " significa não só diferenciável em , mas diferenciável em algum disco aberto centrado em , no plano complexo. (pt) 全纯函数(英語:Holomorphic function)是复分析研究的中心对象;它们是定义在复平面的开子集上的,在复平面中取值的,在每点上皆複可微的函数。全纯函数有时称为正则函数。在整个复平面上都全纯的函数称为整函数。在一点全纯,不仅表意味着可微,而且表示在某个中心为的复平面上的开邻域上可微。 (zh) Аналіти́чна фу́нкція — функція, яка збігається зі своїм рядом Тейлора в околі будь-якої точки області визначення. У випадку функції комплексної змінної ця властивість збігається із властивістю голоморфності. (uk) 在數學中,解析函数(英語:Analytic function)是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。两种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在上也可以定義解析函數,這套想法在當代數論與中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个点的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 。 (zh) Les funcions holomorfes són l'objecte central d'estudi de l'anàlisi complexa; són funcions definides en un subconjunt obert del pla complex amb valors a que són complexament diferenciables en tots els punts. Això és una condició molt més forta que la diferenciabilitat real i implica que la funció és infinitament diferenciable i es pot descriure per la seva sèrie de Taylor. El terme funció analítica és utilitzat sovint com a sinònim de "funció holomorfa". Una funció que és holomorfa en tot el pla complex s'anomena funció entera. La frase "holomorfa en un punt a" significa que no només és diferenciable en a, sinó que és diferenciable en tot un disc obert centrat en a en el pla complex. Biholomorfa és una funció holomorfa bijectiva amb una funció inversa també holomorfa. La paraula "holomor (ca) Στα μαθηματικά, οι ολόμορφες συναρτήσεις είναι τα βασικά αντικείμενα μελέτης στην μιγαδική ανάλυση. Μια ολόμορφη συνάρτηση είναι μια μιγαδική συνάρτηση μιας ή περισσότερων μιγαδικών μεταβλητών που είναι μιγαδικά παραγωγίσιμη σε κάθε σημείο μιας περιοχής του της. Η ύπαρξη μιας μιγαδικής παραγώγου σε μια περιοχή τιμών είναι πολύ σημαντική, γιατί υποδηλώνει ότι κάθε ολόμορφη συνάρτηση είναι στην πραγματικότητα απείρως διαφορίσιμη και ίση με τη δική της σειρά Taylor. (el) In der Mathematik sind holomorphe Funktionen (von altgriechisch ὅλος holos „ganz, vollständig“ und μορφή morphē „Form, Gestalt“) komplexwertige Funktionen (Abbildungen von komplexen Zahlen in komplexe Zahlen), die in der Funktionentheorie, einem Teilgebiet der Mathematik, untersucht werden. Eine komplexwertige Funktion mit Definitionsbereich heißt holomorph, falls sie an jeder Stelle von komplex differenzierbar ist. Die aus der Schulmathematik bekannten Rechenregeln zum Ableiten vormals reeller Funktionen gelten dabei weiterhin für komplexe Funktionen, obgleich der Holomorphiebegriff viel weitreichendere Konsequenzen nach sich zieht. Anschaulich bedeutet Holomorphie, dass sich die betroffene Funktion an jeder Stelle „fast“ wie eine aus mathematischer Sicht leicht zu verstehende (komplexw (de) Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son funciones que se definen sobre un subconjunto del plano complejo y con valores en , que son complejo-diferenciables en algún entorno de un punto de su dominio. En este caso se dice que la función es holomorfa en ese punto.​ Si la función es holomorfa en cada punto de su dominio, se dice que es holomorfa en su dominio. Esta condición es mucho más fuerte que la diferenciabilidad en caso real e implica que la función es infinitamente diferenciable y que puede ser descrita mediante su serie de Taylor. (es) In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis. (en) En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Article détaillé : Fonction holomorphe. (fr) In matematica, una funzione olomorfa (composizione delle parole greche "holos", tutto e "morphe", forma; in riferimento alla capacità della derivata di rimanere uguale a sé stessa nelle trasformazioni) è una funzione definita su un sottoinsieme aperto del piano dei numeri complessi con valori in che è differenziabile in senso complesso in ogni punto del dominio. Le funzioni olomorfe sono tra gli oggetti principali dell'analisi complessa. Si dimostra che possono essere scritte ovunque come serie di potenze convergenti. Detto in altri termini, sono funzioni analitiche, e il termine "funzione analitica" viene utilizzato come sinonimo di funzione olomorfa. (it) In matematica, una funzione analitica è una funzione localmente espressa da una serie di potenze convergente. Spesso il termine "funzione analitica" è utilizzato come sinonimo di funzione olomorfa, sebbene quest'ultimo si utilizzi più spesso per le funzioni complesse (tutte le funzioni olomorfe sono funzioni analitiche complesse e viceversa). Una funzione è analitica se e solo se, preso comunque un punto appartenente al dominio della funzione, esiste un suo intorno in cui la funzione coincide col suo sviluppo in serie di Taylor. (it) In de wiskunde is een analytische functie een functie die lokaal door een machtreeks kan worden benaderd die convergent is. Er zijn zowel reëelwaardige als complexwaardige analytische functies. Beide soorten functies kunnen weliswaar oneindig vaak worden gedifferentieerd, maar complexe hebben eigenschappen die niet algemeen voor reële gelden. Deze definitie komt er voor een functie in een punt mee overeen dat er een omgeving van is, waarin de taylorontwikkeling van convergeert. (nl) Holomorfe functies (van het Griekse ὅλος (holos) dat geheel betekent) zijn het centrale onderwerp van studie binnen de complexe functietheorie, een deelgebied van de wiskunde. Holomorfe functies zijn functies die op een open deelverzameling van het complexe vlak zijn gedefinieerd met waarden in en die in ieder punt in dit definitiegebied als complexe functie kunnen worden gedifferentieerd. Dit is een veel sterkere conditie dan de reële differentieerbaarheid en houdt in dat de functie een gladde functie is, dus oneindig vaak kan worden gedifferentieerd. (nl) Голоморфная функция или однозначная комплексная аналитическая функция (от греч. ὅλος — «весь, целый» и μορφή — «форма»), иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке. В отличие от вещественного случая, это условие означает, что функция бесконечно дифференцируема и может быть представлена сходящимся к ней рядом Тейлора. (ru) Analytiska funktioner (även komplexanalytiska funktioner eller holomorfa funktioner) studeras i den del av matematiken som kallas komplex analys. En komplexvärd funktion f av en komplex variabel z är analytisk i punkten z0 om dess komplexa derivata Exempel på hela funktioner är * polynomfunktioner * * Exempel på kontinuerliga funktioner som inte är analytiska i någon punkt är * (absolutbeloppet av z). * (komplexkonjugatet av z). Varje analytisk funktion uppfyller Cauchy-Riemanns ekvationer. (sv) Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения. Однозначная функция называется аналитической в точке , если сужение функции на некоторую окрестность является аналитической функцией.Если функция аналитична в точке , то она аналитическая в каждой точке некоторой окрестности точки . Однозначная аналитическая функция одной комплексной переменной — это функция , для которой в некоторой односвязной области , называемой областью аналитичности, выполняется одно из четырёх равносильных условий: (ru) Голомо́рфна фу́нкція — комплексна функція, визначена на відкритій підмножині комплексної площини , що має комплексну похідну в кожній точці цієї множини. Голоморфність функції є досить сильною умовою. На відміну від випадку дійсних функцій, голоморфність означає, що функція є нескінченно диференційовною і рівна сумі свого ряду Тейлора в околі кожної точки. (uk)
rdfs:label دالة تامة الشكل (ar) دالة تحليلية (ar) Funció analítica (ca) Funció holomorfa (ca) Analytická funkce (cs) Holomorfní funkce (cs) Analytische Funktion (de) Holomorphe Funktion (de) Αναλυτική συνάρτηση (el) Ολόμορφη συνάρτηση (el) Holomorfa funkcio (eo) Función analítica (es) Función holomorfa (es) Fonction analytique (fr) Funzione olomorfa (it) Funzione analitica (it) Holomorphic function (en) Fonction holomorphe (fr) 解析関数 (ja) 정칙 함수 (ko) 해석 함수 (ko) 正則関数 (ja) Holomorfe functie (nl) Funkcja holomorficzna (pl) Funkcja analityczna (pl) Analytische functie (nl) Função holomorfa (pt) Função analítica (pt) Голоморфная функция (ru) Аналитическая функция (ru) Analytisk funktion (sv) Голоморфна функція (uk) Аналітична функція (uk) 解析函数 (zh) 全纯函数 (zh)
owl:differentFrom dbr:Homomorphism
owl:sameAs freebase:Holomorphic function yago-res:Holomorphic function http://d-nb.info/gnd/4025645-5 wikidata:Holomorphic function wikidata:Holomorphic function dbpedia-ar:Holomorphic function dbpedia-ar:Holomorphic function http://ast.dbpedia.org/resource/Función_holomorfa http://ba.dbpedia.org/resource/Голоморфлы_функция dbpedia-be:Holomorphic function dbpedia-bg:Holomorphic function dbpedia-bg:Holomorphic function dbpedia-ca:Holomorphic function dbpedia-ca:Holomorphic function dbpedia-cs:Holomorphic function dbpedia-cs:Holomorphic function dbpedia-de:Holomorphic function dbpedia-de:Holomorphic function dbpedia-el:Holomorphic function dbpedia-el:Holomorphic function dbpedia-eo:Holomorphic function dbpedia-es:Holomorphic function dbpedia-es:Holomorphic function dbpedia-et:Holomorphic function dbpedia-et:Holomorphic function dbpedia-fa:Holomorphic function dbpedia-fa:Holomorphic function dbpedia-fi:Holomorphic function dbpedia-fi:Holomorphic function dbpedia-fr:Holomorphic function dbpedia-fr:Holomorphic function dbpedia-gl:Holomorphic function dbpedia-he:Holomorphic function dbpedia-he:Holomorphic function http://hi.dbpedia.org/resource/वैश्‍लेषिक_फलन http://hi.dbpedia.org/resource/होलोमार्फिक_फलन dbpedia-hu:Holomorphic function dbpedia-hu:Holomorphic function http://hy.dbpedia.org/resource/Անալիտիկ_ֆունկցիա dbpedia-is:Holomorphic function dbpedia-it:Holomorphic function dbpedia-it:Holomorphic function dbpedia-ja:Holomorphic function dbpedia-ja:Holomorphic function dbpedia-ka:Holomorphic function dbpedia-kk:Holomorphic function dbpedia-ko:Holomorphic function dbpedia-ko:Holomorphic function http://ky.dbpedia.org/resource/Аналитикалык_функция dbpedia-lmo:Holomorphic function http://lt.dbpedia.org/resource/Analizinė_funkcija http://lt.dbpedia.org/resource/Holomorfinė_funkcija http://ml.dbpedia.org/resource/വിശ്ലേഷകഫലനം dbpedia-nl:Holomorphic function dbpedia-nl:Holomorphic function dbpedia-nn:Holomorphic function dbpedia-nn:Holomorphic function dbpedia-no:Holomorphic function dbpedia-oc:Holomorphic function dbpedia-pl:Holomorphic function dbpedia-pl:Holomorphic function dbpedia-pt:Holomorphic function dbpedia-pt:Holomorphic function dbpedia-ro:Holomorphic function dbpedia-ro:Holomorphic function dbpedia-ru:Holomorphic function dbpedia-ru:Holomorphic function http://scn.dbpedia.org/resource/Funzioni_olomorfa dbpedia-simple:Holomorphic function dbpedia-sk:Holomorphic function dbpedia-sl:Holomorphic function dbpedia-sq:Holomorphic function dbpedia-sr:Holomorphic function dbpedia-sv:Holomorphic function http://ta.dbpedia.org/resource/முற்றுருவச்_சார்பியம் dbpedia-tr:Holomorphic function dbpedia-tr:Holomorphic function dbpedia-uk:Holomorphic function dbpedia-uk:Holomorphic function http://uz.dbpedia.org/resource/Analitik_funksiya dbpedia-vi:Holomorphic function dbpedia-vi:Holomorphic function dbpedia-zh:Holomorphic function dbpedia-zh:Holomorphic function https://global.dbpedia.org/id/yZJ8
prov:wasDerivedFrom wikipedia-en:Holomorphic_function?oldid=1123311748&ns=0
foaf:depiction wiki-commons:Special:FilePath/Conformal_map.svg wiki-commons:Special:FilePath/Non-holomorphic_complex_conjugate.svg
foaf:isPrimaryTopicOf wikipedia-en:Holomorphic_function
is dbo:wikiPageDisambiguates of dbr:Holomorph
is dbo:wikiPageRedirects of dbr:Holomorphic dbr:Holomorphic_functions dbr:Holomorphism dbr:Complex-differentiable dbr:Complex_analytic_function dbr:Complex_differentiability dbr:Complex_derivative dbr:Complex_differentiable dbr:Complex_analytic_map dbr:Holomorphic_map
is dbo:wikiPageWikiLink of dbr:Casorati–Weierstrass_theorem dbr:Behnke–Stein_theorem_on_Stein_manifolds dbr:Beltrami_equation dbr:Potential_flow dbr:Power_series dbr:Quaternionic_analysis dbr:Rouché's_theorem dbr:Rudolf_Fueter dbr:Schwarzian_derivative dbr:Enriques–Kodaira_classification dbr:List_of_complex_analysis_topics dbr:Multiplicity_(mathematics) dbr:Mergelyan's_theorem dbr:Meromorphic_function dbr:Monodromy_theorem dbr:Montel's_theorem dbr:Montel_space dbr:Projective_unitary_group dbr:Segal–Bargmann_space dbr:Bergman_kernel dbr:Bergman_space dbr:Bessel_function dbr:Binomial_theorem dbr:Bo_Berndtsson dbr:De_Moivre's_formula dbr:Dedekind_eta_function dbr:Derivative dbr:Dessin_d'enfant dbr:Algebra_over_a_field dbr:Algebraic_analysis dbr:Algebraic_function dbr:Almost_complex_manifold dbr:Antiderivative_(complex_analysis) dbr:Antiholomorphic_function dbr:Holomorphic dbr:Holomorphic_Embedding_Load-flow_method dbr:Holomorphic_functions dbr:Holomorphic_separability dbr:Holomorphic_vector_bundle dbr:Holomorphism dbr:Homogeneous_distribution dbr:Hurwitz's_theorem_(complex_analysis) dbr:Hyperbolic_functions dbr:Jordan's_lemma dbr:Jordan_matrix dbr:Josip_Plemelj dbr:Julia_set dbr:Pathological_(mathematics) dbr:Phase-space_formulation dbr:Representation_theory_of_the_Lorentz_group dbr:Reproducing_kernel_Hilbert_space dbr:Residue_theorem dbr:Riemann_surface dbr:Riemann_zeta_function dbr:Robert_Langlands dbr:Cuspidal_representation dbr:Undefined_(mathematics) dbr:Univalent_function dbr:De_Branges's_theorem dbr:Donaldson–Thomas_theory dbr:E8_lattice dbr:Infinite-dimensional_holomorphy dbr:Infinite_product dbr:Integral_domain dbr:Invariant_convex_cone dbr:Inverse_function_theorem dbr:J._Arthur_Seebach_Jr. dbr:Mandelbrot_set dbr:Real_analysis dbr:Lindelöf's_theorem dbr:List_of_mathematic_operators dbr:List_of_probabilistic_proofs_of_non-probabilistic_theorems dbr:Shilov_boundary dbr:Weierstrass–Enneper_parameterization dbr:Pseudogroup dbr:Ringed_space dbr:Zeros_and_poles dbr:0 dbr:Complex-differentiable dbr:Complex_analysis dbr:Complex_analytic_function dbr:Complex_analytic_variety dbr:Complex_differentiability dbr:Complex_logarithm dbr:Complex_number dbr:Complex_plane dbr:Critical_point_(mathematics) dbr:Analytic_continuation dbr:Analytic_function dbr:Analytic_polyhedron dbr:Analyticity_of_holomorphic_functions dbr:Mean_value_theorem dbr:Essential_singularity dbr:Generalizations_of_the_derivative dbr:Generalized_complex_structure dbr:Geometric_function_theory dbr:Operator_product_expansion dbr:Orbit_(dynamics) dbr:Morera's_theorem dbr:Supersymmetry_nonrenormalization_theorems dbr:Operator_theory dbr:Schottky's_theorem dbr:Wirtinger_derivatives dbr:Quadratic_differential dbr:Quasicircle dbr:Quaternionic_manifold dbr:Eigendecomposition_of_a_matrix dbr:Entire_function dbr:Enzo_Martinelli dbr:Frank_Ryan_(American_football) dbr:Fréchet_space dbr:Function_of_several_complex_variables dbr:Fundamental_theorem_of_algebra dbr:Fundamental_theorem_of_calculus dbr:Gaetano_Fichera dbr:Gamma_function dbr:Gateaux_derivative dbr:Giacinto_Morera dbr:Giuseppe_Vitali dbr:Glossary_of_areas_of_mathematics dbr:Bott_residue_formula dbr:Branch_point dbr:Branching_theorem dbr:Mock_modular_form dbr:Modular_form dbr:Monstrous_moonshine dbr:Morphism_of_algebraic_varieties dbr:Möbius_transformation dbr:Conformal_geometry dbr:Conformal_map dbr:Conjugate_Fourier_series dbr:Convergence_of_Fourier_series dbr:Corona_theorem dbr:Thin_set_(analysis) dbr:Lacunary_value dbr:Milne-Thomson_method_for_finding_a_holomorphic_function dbr:Milnor_number dbr:Open_mapping_theorem_(complex_analysis) dbr:Orientifold dbr:Orthogonal_coordinates dbr:Andreotti–Norguet_formula dbr:Annulus_(mathematics) dbr:Bateman_transform dbr:Bergman–Weil_formula dbr:Berkovich_space dbr:Leech_lattice dbr:Liouville's_theorem_(complex_analysis) dbr:Lipman_Bers dbr:Logarithm_of_a_matrix dbr:Ludwig_Bieberbach dbr:Luigi_Amoroso dbr:Maass_wave_form dbr:Calculus_on_Euclidean_space dbr:Sine_and_cosine dbr:Singularity_(mathematics) dbr:Commutative_ring dbr:Complex_affine_space dbr:Complex_conjugate dbr:Complex_coordinate_space dbr:Complex_differential_form dbr:Complex_dynamics dbr:Complex_geodesic dbr:Complex_geometry dbr:Complex_manifold dbr:Complex_projective_space dbr:Composition_operator dbr:Zeta_function_universality dbr:Fatou–Bieberbach_domain dbr:Frank_Forelli dbr:Fréchet_algebra dbr:Fubini–Study_metric dbr:Hardy's_theorem dbr:Hardy_space dbr:Harmonic_conjugate dbr:Harmonic_morphism dbr:Harmonic_series_(mathematics) dbr:Henri_Milloux dbr:Identity_theorem_for_Riemann_surfaces dbr:John_McCarthy_(mathematician) dbr:Spectrum_(functional_analysis) dbr:Maximum_modulus_principle dbr:Schur_class dbr:Augustin-Louis_Cauchy dbr:Banach_space dbr:Cauchy's_integral_formula dbr:Cauchy–Riemann_equations dbr:Topological_vector_space dbr:Tube_domain dbr:W._V._D._Hodge dbr:Weierstrass_factorization_theorem dbr:Wielandt_theorem dbr:Disk_algebra dbr:Distributed_parameter_system dbr:Domain_of_holomorphy dbr:Haar's_Tauberian_theorem dbr:Hadamard_three-circle_theorem dbr:Hadamard_three-lines_theorem dbr:Heisenberg_group dbr:Langlands_program dbr:Local_homeomorphism dbr:Loewner_differential_equation dbr:Logarithmic_form dbr:Wrapped_Cauchy_distribution dbr:Schwarz–Ahlfors–Pick_theorem dbr:Subharmonic_function dbr:Stein_manifold dbr:Smoothness dbr:Alfred_Tauber dbr:Algebraic_geometry_and_analytic_geometry dbr:Erich_Hecke dbr:Exponential_function dbr:Felice_Casorati_(mathematician) dbr:Fourier_transform dbr:Banach_algebra dbr:Brjuno_number dbr:Novikov–Veselov_equation dbr:Osgood's_lemma dbr:Carathéodory_kernel_theorem dbr:Cauchy's_integral_theorem dbr:Differential_operator dbr:Dirichlet_space dbr:Discrete_valuation dbr:Farrell–Markushevich_theorem dbr:Fock_space dbr:Formal_holomorphic_function dbr:Germ_(mathematics) dbr:Grassmann_number dbr:Hitchin_functional dbr:Isolated_singularity dbr:Jordan_normal_form dbr:Kobayashi_metric dbr:Simply_connected_space dbr:Seán_Dineen dbr:Normal_family dbr:Progressive_function dbr:Projective_variety dbr:Quasiregular_map dbr:Removable_singularity dbr:Residue_(complex_analysis) dbr:Schwarz_reflection_principle dbr:Gustav_Herglotz dbr:Harmonic_function dbr:Hartogs's_extension_theorem dbr:Hilbert_space dbr:Hilbert_transform dbr:Isothermal_coordinates dbr:J-invariant dbr:Jack_Thorne_(mathematician) dbr:Taylor_series dbr:Cousin_problems dbr:Covering_space dbr:Tetration dbr:Hypercomplex_analysis dbr:Hyperfunction dbr:Sokhotski–Plemelj_theorem dbr:Riemann_sphere dbr:Total_ring_of_fractions dbr:Artur_Avila dbr:Arzelà–Ascoli_theorem dbr:Abelian_integral dbr:Abel–Plana_formula dbr:Chern_class dbr:Lambert_W_function dbr:Laplace_transform dbr:Lasse_Rempe dbr:Laurent_series dbr:Bifurcation_locus dbr:Biholomorphism dbr:Bloch's_theorem_(complex_variables) dbr:Bloch_space dbr:Blowing_up dbr:Symplectic_geometry dbr:Coherent_sheaf_cohomology dbr:Cohomology dbr:Edge-of-the-wedge_theorem dbr:Hodge_theory dbr:Hodge–de_Rham_spectral_sequence dbr:Holomorphic_functional_calculus dbr:Holonomy dbr:Theta_representation dbr:Torus_knot dbr:Differentiable_function dbr:Differentiable_manifold dbr:Differential_geometry dbr:Dirac_delta_function dbr:Distribution_(mathematics) dbr:Domain_(mathematical_analysis) dbr:Donald_C._Spencer dbr:Automorphic_factor dbr:Automorphic_form dbr:Automorphic_function dbr:Manifold dbr:Butcher_group dbr:Bäcklund_transform dbr:CR_manifold dbr:Phragmén–Lindelöf_principle dbr:Pi dbr:Pluriharmonic_function dbr:Polygamma_function dbr:Spaces_of_test_functions_and_distributions
is foaf:primaryTopic of wikipedia-en:Holomorphic_function