Collocation method (original) (raw)
تحويل فورييه (بالإنجليزية: Fourier Transform) هو عملية رياضية تستخدم لتحويل دالّة رياضية بمتغير حقيقي وذات قيم مركّبة إلى دالّة أخرى من نفس الطراز. وكثيرًا ما يطلق على هذه الدالة الجديدة لقب التمثيل في نطاق التّردّد للدالة الأصلية. والأمر شبيه بتدوين التآلف الموسيقي بواسطة النغمات التي يتكون منها ذلك التآلف. عمليًا، فإنّ التحويل يقوم بتحليل الدالّة الأصل إلى مركّباتها من المركّبة. وإنّ تحويل فورييه ما هو إلاّ إحدى الأدوات الرياضية المتوفّرة في ضمن مجال تحليل فورييه. في تحويل فورييه الأصلي، والذي خصّصت له هذه الصفحة، فإنّ نطاق الدالة الأصليّة ونطاق الدالة الناتجة هما نطاقان مستمرّان وغير محدودين. قد يستخدم المصطلح تحوييل فورييه إمّا للإشارة إلى العملية الرياضيّة نفسها، أو للإشارة إلى الدالة الناتجة عن التحويل (فمثلاً، تكون الدالة هي تحويل فورييه للدالة ).
Property | Value |
---|---|
dbo:abstract | La transformada de Fourier descompon una funció temporal (un senyal) en les freqüències que la constitueixen. Aquesta descomposició resultant és una funció complexa, el valor absolut de la qual representa la quantitat de cada freqüència present en la funció original, i l'argument complex de la qual és el desfasament de la sinusoide bàsica en aquella freqüència. Si bé l'aplicació de la transformada de Fourier no es limita només a funcions temporals, el domini de la funció original se sol anomenar domini temporal. La transformada és anomenada domini freqüencial. El terme transformada de Fourier fa referència tant a la representació en el domini freqüencial com a l'operació matemàtica que associa el domini freqüencial a una funció temporal. La transformada de Fourier gaudeix d'una sèrie de propietats de continuïtat que garanteixen que pot estendre's a espais de funcions majors i fins i tot a espais de distribucions temperades. A més, té una multitud d'aplicacions en moltes àrees de la ciència i enginyeria: la física, la teoria dels nombres, la combinatòria, el processament de senyals (electrònica), la teoria de la probabilitat, l'estadística, l'òptica, la propagació d'ones i altres àrees. La branca de la matemàtica que estudia la transformada de Fourier i les seves generalitzacions és denominada anàlisi harmònica. (ca) تحويل فورييه (بالإنجليزية: Fourier Transform) هو عملية رياضية تستخدم لتحويل دالّة رياضية بمتغير حقيقي وذات قيم مركّبة إلى دالّة أخرى من نفس الطراز. وكثيرًا ما يطلق على هذه الدالة الجديدة لقب التمثيل في نطاق التّردّد للدالة الأصلية. والأمر شبيه بتدوين التآلف الموسيقي بواسطة النغمات التي يتكون منها ذلك التآلف. عمليًا، فإنّ التحويل يقوم بتحليل الدالّة الأصل إلى مركّباتها من المركّبة. وإنّ تحويل فورييه ما هو إلاّ إحدى الأدوات الرياضية المتوفّرة في ضمن مجال تحليل فورييه. في تحويل فورييه الأصلي، والذي خصّصت له هذه الصفحة، فإنّ نطاق الدالة الأصليّة ونطاق الدالة الناتجة هما نطاقان مستمرّان وغير محدودين. قد يستخدم المصطلح تحوييل فورييه إمّا للإشارة إلى العملية الرياضيّة نفسها، أو للإشارة إلى الدالة الناتجة عن التحويل (فمثلاً، تكون الدالة هي تحويل فورييه للدالة ). (ar) Fourierova transformace je integrální transformace převádějící signál mezi časově a frekvenčně závislým vyjádřením pomocí harmonických signálů, tj. funkcí a , obecně tedy funkcí komplexní exponenciály. Slouží pro převod signálů z časové oblasti do oblasti frekvenční. Signál může být buď ve spojitém či diskrétním čase. (cs) Die Fourier-Transformation (genauer die kontinuierliche Fourier-Transformation; Aussprache: [fuʁie]) ist eine mathematische Methode aus dem Bereich der Fourier-Analyse, mit der aperiodische Signale in ein kontinuierliches Spektrum zerlegt werden. Die Funktion, die dieses Spektrum beschreibt, nennt man auch Fourier-Transformierte oder Spektralfunktion. Es handelt sich dabei um eine Integraltransformation, die nach dem Mathematiker Jean Baptiste Joseph Fourier benannt ist. Fourier führte im Jahr 1822 die Fourier-Reihe ein, die jedoch nur für periodische Signale definiert ist und zu einem diskreten Frequenzspektrum führt. Es gibt einige Anwendungsfälle, in denen die Fourier-Transformation mittels eines Computers berechnet werden soll. Dafür wurde die Diskrete Fourier-Transformation beziehungsweise die Schnelle Fourier-Transformation eingeführt. (de) Ο μετασχηματισμός Fourier, το όνομά του οποίου προήλθε από τον Ζοζέφ Φουριέ, είναι ένας μαθηματικός μετασχηματισμός με πολλές εφαρμογές στη φυσική και την μηχανική. Πολύ συχνά μετατρέπει μια μαθηματική συνάρτηση του χρόνου, f(t), σε μια νέα συνάρτηση,που μερικές φορές συμβολίζεται με ή F, των οποίων η μονάδα μέτρησής τους είναι η συχνότητα με την οποία εμφανίζουν μονάδες κύκλου / δευτερόλεπτο ( Hertz ) ή ακτίνια ανά δευτερόλεπτο. Η νέα συνάρτηση είναι τότε γνωστή ως μετασχηματισμός Fourier ή και ως φάσμα συχνοτήτων της συνάρτησης f. Ο μετασχηματισμός Fourier είναι επίσης μια αντιστρέψιμη συνάρτηση. Έτσι, με δεδομένη την συνάρτηση μπορεί να προσδιοριστεί η αρχική συνάρτηση, f. Οι f και είναι, επίσης, αντίστοιχα, γνωστές ως πεδίο του χρόνου και της συχνότητας, αναπαραστάσεις του ίδιου «γεγονότος».Τις περισσότερες φορές ίσως, η f είναι μια πραγματική συνάρτηση, και η είναι μια μιγαδική συνάρτηση, όπου ένας μιγαδικός αριθμός περιγράφει τόσο το πλάτος όσο και τη φάση της αντίστοιχης συνιστώσας συχνότητας. Σε γενικές γραμμές, η f είναι επίσης σύνθετη, όπως η αναλυτική αναπαράσταση μιας πραγματικής συνάρτησης. Ο όρος "μετασχηματισμός Fourier" αναφέρεται τόσο στην συνάρτηση μετασχηματισμού όσο και στην μιγαδική συνάρτηση που παράγει. Στην περίπτωση μιας περιοδικής συνάρτησης (για παράδειγμα, μια συνεχής, αλλά όχι απαραίτητα ημιτονοειδούς μουσικού ήχου), ο μετασχηματισμός Fourier μπορεί να απλοποιηθεί με τον υπολογισμό ενός διακριτού σύνολο σύνθετου πλάτους, που ονομάζεται συντελεστής σειράς Fourier. Επίσης, όταν μια συνάρτηση του πεδίου χρόνου λειτουργίας χρησιμοποιηθεί για τη διευκόλυνση της αποθήκευσης ή της επεξεργασίας του υπολογιστή , είναι ακόμα δυνατό να αναδημιουργήσει μια έκδοση του αρχικού μετασχηματισμού Fourier σύμφωνα με τον τύπο άθροισης Poisson, που επίσης είναι γνωστή ως μετασχηματισμός διακριτού χρόνου Fourier . Τα θέματα αυτά εξετάζονται σε χωριστά άρθρα. Για μια επισκόπηση αυτών και άλλες συναφείς δραστηριότητες, ανατρέξτε στην ανάλυση Fourier ή στην Λίστα που σχετίζεται με τους μετασχηματισμούς Fourier. (el) La furiera transformo aŭ transformo de Fourier, nomita honore al Joseph Fourier, estas integrala transformo , kiu esprimas funkcion per terminoj de sinusaj bazaj funkcioj, kio estas kiel sumo aŭ integralo de sinusaj funkcioj multiplikitaj per iuj koeficientoj ("argumentoj"). Estas multaj proksime rilatantaj variaĵoj de ĉi tiu transformo, resumitaj pli sube, dependantaj de la tipo de la transform-funkcio. Vidu ankaŭ en . (eo) In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the given equation at the collocation points. (en) Die Kollokation nach kleinsten Quadraten (nach lat. collocatio Anordnung, gemeinsame Stellung), engl. least squares collocation, ist ein kombiniertes Interpolations- und Ausgleichungs-Verfahren, bei dem im Gegensatz zur normalen Ausgleichsrechnung Daten mit sehr verschiedener Charakteristik verarbeitet werden können. Wer die Methode und deren Grundlagen erstmals entwickelt hat, ist noch nicht zweifelsfrei recherchiert. Am Institut für Maschinelle Rechentechnik der damaligen TH Dresden entwickelte 1958 im Rahmen seiner Doktorarbeit Kollokationsmethoden und habilitierte sich 1966 zu Näherungsverfahren für lineare Integrationsgleichungen 2. Art auf der Grundlage der Kollokation. Ab 1969 entwickelte Horst Kadner als ordentlicher Professor für Mathematische Kybernetik und Rechentechnik der TU Dresden Lösungsmethoden für eine spezielle Klasse von Integralgleichungen auf der Basis von Kollokationsmethoden. Ende der 1970er Jahre wurden diese Methoden vom Geodäten und Mathematiker Helmut Moritz (Berlin/Graz) für die Zwecke der integrierten Geoidbestimmung aufgenommen, um geometrische und physikalische Daten der Erdfigur und des Erdschwerefeldes in einem Guss verarbeiten zu können. Moritz gab auch Lösungen des Kollokationsproblems und der Kovarianzmatrix in Schritten an, um bei großem Datenumfang die Computer-Rechenzeiten zu reduzieren. Umfangreiche Anwendungen stammen u. a. von Hans Sünkel (integrierte lokale Geoidbestimmung) und von Christian Tscherning (regionale Gravimetrie). Die erste astro-geodätische Geoidbestimmung mittels LSC erfolgte 1982 an der TU Graz. Sie konnte die Genauigkeit des österreichischen Astrogeoides (durchschnittlich ±6 cm aus 700 Messpunkten der Lotabweichung) durch Einbeziehung eines globalen harmonischen Schweremodells (R.H.Rapp, bis 180. Ordnung) um etwa ein Viertel steigern und einen lokalen Datenfehler isolieren. Drei Jahre später konnte die Genauigkeit durch die Einbeziehung von etwa 10.000 Schwereanomalien auf ±4 cm erhöht werden. Seit etwa 1990 dient die Kollokation auch als Basis für großräumige Schwerefeld-Modellierungen unter Einschluss von Kugelfunktions-Entwicklungen der Satellitengeodäsie, u. a. in zwei Programmsystemen deutscher Hochschulen, und . Anwendungen in Nordeuropa (Tscherning & 1986–1993), in Italien, Spanien (Simo, & 1994) und in der Türkei (Ayhan 1993) zeigten die Vorteile integraler Berechnungen durch Genauigkeitssteigerungen von etwa ein Drittel gegenüber Einzellösungen. Die Besonderheit dieser Anwendungen ist die Minimierung des mittleren Fehlers der verwendeten Messungen, indem alle Datenkonfigurationen durch eine Rotation des Geozentrums ineinander abgebildet werden (daher auch der Name Kol-lokation). Die Kollokationsmethode wird mittlerweile auch in der Chemischen Thermodynamik angewendet. (de) "denboraren eremuko" funtzioa izanik, ren Fourierren transformatua deritzo (Jean Baptiste Joseph Fourierren omenez) funtzioari, bezala definitzen dena. Berau funtzio integragarriarentzat definitua dagoelarik, non Transformatu honen bidez funtzioa "maiztasun eremura" aldatzen da denboraren eremuan argi azaltzen ez den informazioa lortzeko. transformatua funtzio jarrai eta bornatu bat da. -k betezten badu, bere alderantzizko transformatua: izango da. Bere propietateak direla eta: Fourier transformatua oso garrantzitsua da ekuazio diferentzialen soluzioak lortzeko. (eu) La transformada de Fourier, denominada así por Joseph Fourier, es una transformación matemática empleada para transformar señales entre el dominio del tiempo (o espacial) y el dominio de la frecuencia, que tiene muchas aplicaciones en la física y la ingeniería. Es reversible, siendo capaz de transformarse en cualquiera de los dominios al otro. El propio término se refiere tanto a la operación de transformación como a la función que produce. En el caso de una función periódica en el tiempo (por ejemplo, un sonido musical continuo pero no necesariamente sinusoidal), la transformada de Fourier se puede simplificar para el cálculo de un conjunto discreto de amplitudes complejas, llamado coeficientes de las series de Fourier. Ellos representan el espectro de frecuencia de la señal del dominio-tiempo original. La transformada de Fourier es una aplicación que hace corresponder a una función con otra función definida de la manera siguiente: Donde es , es decir, tiene que ser una función integrable en el sentido de la integral de Lebesgue. El factor, que acompaña la integral en definición facilita el enunciado de algunos de los teoremas referentes a la transformada de Fourier. Aunque esta forma de normalizar la transformada de Fourier es la más comúnmente adoptada, no es universal. En la práctica, las variables y suelen estar asociadas a dimensiones como el tiempo —segundos— y frecuencia —hercios— respectivamente, si se utiliza la fórmula alternativa: la constante cancela las dimensiones asociadas a las variables obteniendo un exponente adimensional. La transformada de Fourier así definida goza de una serie de propiedades de continuidad que garantizan que puede extenderse a espacios de funciones mayores e incluso a espacios de funciones generalizadas. Sus aplicaciones son muchas, en áreas de la matemática, ciencia e ingeniería como la física, la teoría de los números, la combinatoria, el procesamiento de señales (electrónica), la teoría de la probabilidad, la estadística, la óptica, la propagación de ondas y otras áreas. En procesamiento de señales la transformada de Fourier suele considerarse como la descomposición de una señal en componentes de frecuencias diferentes, es decir, corresponde al espectro de frecuencias de la señal . La rama de la matemática que estudia la transformada de Fourier y sus generalizaciones es denominada análisis armónico. (es) Transformasi Fourier, dinamakan atas Joseph Fourier, adalah sebuah yang menyatakan-kembali sebuah fungsi dalam sinusoidal, yaitu sebuah fungsi sinusoidal penjumlahan atau integral dikalikan oleh beberapa koefisien ("amplitudo"). Ada banyak variasi yang berhubungan-dekat dari transformasi ini tergantung jenis fungsi yang ditransformasikan. Lihat juga: Daftar transformasi yang berhubungan dengan Fourier. (in) En analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à une fonction intégrable définie sur ℝ et à valeurs réelles ou complexes, une autre fonction sur ℝ appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation. La transformée de Fourier représente une fonction par la densité spectrale dont elle provient, en tant que moyenne de fonctions trigonométriques de toutes fréquences. La théorie de la mesure ainsi que la théorie des distributions permettent de définir rigoureusement la transformée de Fourier dans toute sa généralité, elle joue un rôle fondamental dans l'analyse harmonique. Lorsqu'une fonction représente un phénomène physique, comme l'état du champ électromagnétique ou du champ acoustique en un point, on l'appelle signal et sa transformée de Fourier s'appelle son spectre. (fr) 選点法(英: Collocation method) とは、数値解析において常微分方程式、偏微分方程式と積分方程式に対して数値解を与える方法である。この方法のアイディアは、解候補(通常はある次数以下の多項式)からなる有限次元のベクトル空間と定義域から幾つかの点を先に選び、それらの点で与えられた方程式を満足する解を解候補の空間から選択することである。そのように選ばれた点は、選点(collocation points)と呼ぶ。 (ja) 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数に写す変換である。 工学においては、変換後の関数はもとの関数に含まれる周波数を記述していると考え、しばしばもとの関数の周波数領域表現 (frequency domain representation) と呼ばれる。言い換えれば、フーリエ変換は関数を正弦波・余弦波に分解するとも言える。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの関数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という言葉は関数の周波数領域表現のことを指すこともあるし、関数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。 (ja) * 사인파의 진폭이 다양한 방식으로 표현되어 있다. (1)은 일반적인 첨두치peak 진폭을, (2)는 최대치와 최저치 사이의 차이를, (3)은 제곱평균제곱근을, (4)는 주기를 나타낸다. * θ만큼 위상차가 생긴 모습 푸리에 변환(Fourier transform, FT)은 시간이나 공간에 대한 함수를 시간 또는 공간 주파수 성분으로 분해하는 변환을 말한다. 종종 이 변환으로 나타난 주파수 영역에서 함수를 표현한 결과물을 가리키는 용어로도 사용된다. 조제프 푸리에가 열전도에 대한 연구에서 열 방정식의 해를 구할 때 처음 사용되었다. 시간에 대한 함수를 푸리에 변환했을 때 얻어지는 복소함수에서 각 주파수에서의 진폭은 원래 함수를 구성하던 그 주파수 성분의 크기를, 편각은 기본 사인 곡선과의 위상차(phase offset)를 나타낸다. 푸리에 변환된 결과물로부터 피변환함수를 복원할 수도 있다. 이를 증명하는 정리를 라고 한다. 원래 함수에 적용할 수 있는 선형 연산은 주파수 영역에도 그 대응되는 연산이 존재하는데, 때때로 이 대응되는 선형 연산이 더 간단할 수도 있다. 시간 영역에서 미분은 주파수 영역에서는 주파수와의 곱셈으로 나타나기 때문에 미분방정식을 푸리에 공간으로 옮겨와 푸는 경우도 종종 발생한다. 또 시간 영역에서의 합성곱은 주파수 영역으로 옮겨오면 평범한 곱셈과 같다. 이런 경우에는 원 함수를 푸리에 공간으로 옮겨와 여기서 선형연산을 적용한 뒤, 다시 역변환을 통해 원 함수를 복원하는 방식으로 연산을 더 쉽게 적용할 수 있다. 이처럼 더 단순한 함수와 연산은 조화해석학 분야에서 체계적으로 연구되고 있으며 현대 수학에 폭 넓게 응용되고 있다. 시간 영역에서는 좁은 지역에서 표현되는 함수를 주파수 영역으로 푸리에 변환하면 함수가 넓게 퍼지게 된다. 이를 불확정성 원리라 한다. 그러나 가우스 함수는 푸리에 변환을 해도 똑같이 가우스 함수로 나타난다. 이 가우스 함수는 확률 이론과 통계학에서 뿐만 아니라 정규 분포를 나타내는 물리 현상에 대한 연구에서 매우 중요하게 다뤄진다. 조제프 푸리에가 푸리에 변환을 통해 구한 열 방정식의 해가 바로 가우스 함수의 꼴을 띄었다. 엄밀히 말하자면 푸리에 변환은 일종의 적분 변환으로, 리만 이상적분이어서 더 복잡한 적분 이론을 요구하는 응용분야에서는 적합하지 않을 수 있다. 대표적으로 많은 경우 디랙 델타 함수를 일종의 함수로 푸리에 변환에 응용하지만, 수학적으로 엄밀한 관점을 취하자면 더 심도있는 고찰이 필요한 것이다. 푸리에 변환은 유클리드 공간의 변수들로 구성된 함수로 일반화할 수도 있다. 즉, 3차원 공간의 함수를 3차원 공간의 운동량에 대한 함수로 바꿀 수도 있고, 혹은 공간과 시간의 함수를 4차원 운동량에 대한 함수로 변환할 수 있다. 이것은 파동에 대한 연구나 양자역학에서뿐 아니라 공간이나 운동량 또는 둘 모두를 함수로 표현할 때 파동 공식 표현이 중요한 분야에서 공간에서의 푸리에 변환이 매우 자연스럽게 사용되도록 하였다. 일반적으로 푸리에 공식이 적용가능한 함수는 복소수이며, 벡터 값을 가질 수 있다. 집합군을 이용한 함수에서는 더 많은 형태가 가능하다. ℝ 또는 ℝn (덧셈에 닫혀있는 집합군으로 보여지는)의 원래의 푸리에 변환 외에, 알려져 있듯이 이산시간 푸리에 변환(DTFT, 집합 ℤ)과 이산 푸리에 변환(DFT, 집합 ℤ mod N), 푸리에 급수, 원형 푸리에 변환(집합 S1, 단위원 = 끝점이 같은 유한 폐구간)을 포함한다. 마지막 것은 보통 주기함수에서 다루어진다. 고속 푸리에 변환(Fast Fourier transform)은 DFT를 계산하기 위한 하나의 알고리즘이다. (ko) In de wiskunde, meer bepaald binnen de fourieranalyse, is de (continue) fouriertransformatie een lineaire integraaltransformatie die een functie ontbindt in een continu spectrum van frequenties. In de wiskundige natuurkunde kan de fouriergetransformeerde van een signaal worden gezien als dat signaal in het "frequentiedomein". De fouriertransformatie generaliseert voor niet-periodieke functies de fourierreeks van een periodieke functie. Een generalisatie van de fouriertransformatie is de laplacetransformatie. (nl) In analisi matematica, la trasformata di Fourier è una trasformata integrale, cioè un operatore che trasforma una funzione in un'altra funzione mediante un'integrazione, sviluppata dal matematico francese Jean Baptiste Joseph Fourier nel 1822, nel suo trattato Théorie analytique de la chaleur. Trova numerose applicazioni nella fisica e nell'ingegneria ovvero uno degli strumenti matematici maggiormente utilizzati nell'ambito delle scienze pure e applicate, permettendo di scrivere una funzione dipendente dal tempo come combinazione lineare (eventualmente continua) di funzioni di base esponenziali. La trasformata di Fourier associa a una funzione i valori dei coefficienti di questi sviluppi lineari, dandone in questo modo una rappresentazione nel dominio delle frequenze che viene spesso chiamata spettro della funzione (la relazione con il concetto di spettro di un operatore può essere compresa se si considera l'operatore di convoluzione con la funzione in esame). A volte si intende per trasformata di Fourier la funzione che risulta dall'applicazione di questo operatore. (it) Em matemática, a transformada de Fourier é uma transformada integral que expressa uma função em termos de sinusoidal. Existem diversas variações diretamente relacionadas desta transformada, dependendo do tipo de função a transformar. A transformada de Fourier, epônimo a Jean-Baptiste Joseph Fourier, decompõe uma função temporal (um sinal) em frequências, tal como um acorde de um instrumento musical pode ser expresso como a amplitude (ou volume) das suas notas constituintes. A transformada de Fourier de uma função temporal é uma função de valor complexo da frequência, cujo valor absoluto representa a soma das frequências presente na função original e cujo argumento complexo é a fase de deslocamento da base sinusoidal naquela frequência. A transformada de Fourier é chamada de representação do domínio da frequência do sinal original. O termo transformada de Fourier refere-se a ambas representações do domínio frequência e à operação matemática que associa a representação domínio frequência a uma função temporal. A transformada de Fourier não é limitada a funções temporais, contudo para fins de convenção, o domínio original é comumente referido como domínio do tempo. Para muitas funções de interesse prático, pode-se definir uma operação de reversão: a transformada inversa de Fourier, também chamada de síntese de Fourier, de um domínio de frequência combina as contribuições de todas as frequências diferentes para a reconstituição de uma função temporal original. Operações lineares aplicadas em um dos domínios(tempo ou frequência) resultam em operações correspondentes no outro domínio, o que, em certas ocasiões, podem ser mais fáceis de efetuar. A operação de diferenciação no domínio do tempo corresponde à multiplicação na frequência, o que torna mais fácil a análise de equações diferenciais no domínio da frequência. Além disso, a convolução no domínio temporal corresponde à multiplicação ordinária no domínio da frequência. Isso significa que qualquer sistema linear que não varia com o tempo, como um filtro aplicado a um sinal, pode ser expressado de maneira relativamente simples como uma operação nas frequências. Após realizar a operação desejada, a transformação do resultado alterna para o domínio do tempo. A Análise harmônica é o estudo sistemático da relação entre os domínios de tempo e frequência, incluindo os tipos de funções ou operações que são mais "simples" em um ou em outro, e possui ligações profundas a muitas áreas da matemática moderna. (pt) Transformacja Fouriera – pewien operator liniowy określany na pewnych przestrzeniach funkcyjnych, elementami których mogą być funkcje zmiennych rzeczywistych. Opisuje ona rozkład tych funkcji w bazie ortonormalnej funkcji trygonometrycznych – za pomocą iloczynu skalarnego funkcji. Została nazwana na cześć Jeana Baptiste’a Josepha Fouriera. Wynikiem transformacji Fouriera jest funkcja nazywana transformatą Fouriera. (pl) Преобразование Фурье (символ ℱ) — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами. (ru) Fouriertransformen, efter Jean Baptiste Joseph Fourier, är en transform som ofta används till att överföra en funktion från tidsplanet till frekvensplanet. Där uttrycks funktionen som summan av sina sinusoidala basfunktioner, eller deltoner. En förutsättning är att basfunktionerna är ortogonala. Det gör till exempel en transformering till eller från frekvensplanet relativt enkel. Fouriertransformen är definierad för såväl tidskontinuerliga som tidsdiskreta signaler. När den används på tidsbegränsade eller periodiska signaler benämns resultatet normalt Fourierserier. Efter den moderna tidens datorutveckling (från ca 1960) har ämnet aktualiserats då man kunnat tillverka signalprocessorer dedikerade till diskret fouriertransform. Behovet av effektiv programkod ledde bland annat till utveckling av snabb fouriertransform. Tillämpat i behandling av ljudsignaler är det inte längre några svårigheter att utföra transformerna i realtid endast med mjukvaruimplementering. Det finns inga farhågor att metoder eller processorteknologi skulle begränsa framtida utveckling och applikationer. (sv) 傅里叶变换(法語:Transformation de Fourier,英語:Fourier transform,缩写:FT)是一种线性积分变换,用于函数(应用上称作「信号」)在时域和频域之间的变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学和工程学中有许多应用。傅里叶变换的作用是将函数分解为不同特征的正弦函数的和,如同化学分析来分析一个化合物的元素成分。对于一个函数,也可对其进行分析,来确定组成它的基本(正弦函数)成分。 经过傅里叶变换生成的函数 称作原函数 的傅里叶变换,应用意义上称作频谱。在特定情況下,傅里叶变换是可逆的,即将 通过逆变换可以得到其原函数 。通常情况下, 是一个实函数,而 则是一个复数值函数,其函数值作为复数可同时表示振幅和相位。高斯函数是傅里叶变换的本征函数。 (zh) В математиці, ме́тод колока́ції це метод числового розв'язання звичайних диференціальних рівнянь, диференціальних рівнянь з частковими похідними та інтегральних рівнянь. Ідея методу полягає в тому, що необхідно вибрати простір можливих розв'язків (зазвичай це многочлени до деякого степеня) і кількості точок в області (точки колокації) і вибору розв'язку, що задовільняє дане рівняння в точках колокації. (uk) Перетворення Фур'є — інтегральне перетворення однієї комплекснозначної функції дійсної змінної на іншу. Тісно пов'язане з перетворенням Лапласа та аналогічне розкладу у ряд Фур'є для неперіодичних функцій. Це перетворення розкладає дану функцію на осциляторні функції. Використовується для того, щоб розрахувати спектр частот для сигналів змінних у часі (як-от мова або електрична напруга). Перетворення названо на честь французького математика Жана Батиста Жозефа Фур'є, який ввів поняття в 1822 році. (uk) |
dbo:wikiPageExternalLink | https://books.google.com/books%3Fid=7Zofw3SFTWIC&q=%22Collocation+method%22 |
dbo:wikiPageID | 5463596 (xsd:integer) |
dbo:wikiPageLength | 5524 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1101629556 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cambridge_University_Press dbr:Integral_equation dbr:Trapezoidal_rule dbr:Gauss–Legendre_method dbr:Gauss–Legendre_quadrature dbr:Legendre_polynomials dbc:Curve_fitting dbr:Numerical_analysis dbr:Partial_differential_equation dbc:Numerical_differential_equations dbr:Polynomial dbr:Society_for_Industrial_and_Applied_Mathematics dbr:Ordinary_differential_equation dbr:Orthogonal_polynomials dbr:Trapezoidal_rule_(differential_equations) dbr:Runge–Kutta_methods dbr:Springer-Verlag dbr:A-stability |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Reflist dbt:Numerical_PDE |
dcterms:subject | dbc:Curve_fitting dbc:Numerical_differential_equations |
gold:hypernym | dbr:Method |
rdf:type | dbo:Software yago:WikicatNumericalDifferentialEquations yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:MathematicalStatement106732169 yago:Message106598915 yago:Statement106722453 |
rdfs:comment | تحويل فورييه (بالإنجليزية: Fourier Transform) هو عملية رياضية تستخدم لتحويل دالّة رياضية بمتغير حقيقي وذات قيم مركّبة إلى دالّة أخرى من نفس الطراز. وكثيرًا ما يطلق على هذه الدالة الجديدة لقب التمثيل في نطاق التّردّد للدالة الأصلية. والأمر شبيه بتدوين التآلف الموسيقي بواسطة النغمات التي يتكون منها ذلك التآلف. عمليًا، فإنّ التحويل يقوم بتحليل الدالّة الأصل إلى مركّباتها من المركّبة. وإنّ تحويل فورييه ما هو إلاّ إحدى الأدوات الرياضية المتوفّرة في ضمن مجال تحليل فورييه. في تحويل فورييه الأصلي، والذي خصّصت له هذه الصفحة، فإنّ نطاق الدالة الأصليّة ونطاق الدالة الناتجة هما نطاقان مستمرّان وغير محدودين. قد يستخدم المصطلح تحوييل فورييه إمّا للإشارة إلى العملية الرياضيّة نفسها، أو للإشارة إلى الدالة الناتجة عن التحويل (فمثلاً، تكون الدالة هي تحويل فورييه للدالة ). (ar) Fourierova transformace je integrální transformace převádějící signál mezi časově a frekvenčně závislým vyjádřením pomocí harmonických signálů, tj. funkcí a , obecně tedy funkcí komplexní exponenciály. Slouží pro převod signálů z časové oblasti do oblasti frekvenční. Signál může být buď ve spojitém či diskrétním čase. (cs) La furiera transformo aŭ transformo de Fourier, nomita honore al Joseph Fourier, estas integrala transformo , kiu esprimas funkcion per terminoj de sinusaj bazaj funkcioj, kio estas kiel sumo aŭ integralo de sinusaj funkcioj multiplikitaj per iuj koeficientoj ("argumentoj"). Estas multaj proksime rilatantaj variaĵoj de ĉi tiu transformo, resumitaj pli sube, dependantaj de la tipo de la transform-funkcio. Vidu ankaŭ en . (eo) In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the given equation at the collocation points. (en) "denboraren eremuko" funtzioa izanik, ren Fourierren transformatua deritzo (Jean Baptiste Joseph Fourierren omenez) funtzioari, bezala definitzen dena. Berau funtzio integragarriarentzat definitua dagoelarik, non Transformatu honen bidez funtzioa "maiztasun eremura" aldatzen da denboraren eremuan argi azaltzen ez den informazioa lortzeko. transformatua funtzio jarrai eta bornatu bat da. -k betezten badu, bere alderantzizko transformatua: izango da. Bere propietateak direla eta: Fourier transformatua oso garrantzitsua da ekuazio diferentzialen soluzioak lortzeko. (eu) Transformasi Fourier, dinamakan atas Joseph Fourier, adalah sebuah yang menyatakan-kembali sebuah fungsi dalam sinusoidal, yaitu sebuah fungsi sinusoidal penjumlahan atau integral dikalikan oleh beberapa koefisien ("amplitudo"). Ada banyak variasi yang berhubungan-dekat dari transformasi ini tergantung jenis fungsi yang ditransformasikan. Lihat juga: Daftar transformasi yang berhubungan dengan Fourier. (in) 選点法(英: Collocation method) とは、数値解析において常微分方程式、偏微分方程式と積分方程式に対して数値解を与える方法である。この方法のアイディアは、解候補(通常はある次数以下の多項式)からなる有限次元のベクトル空間と定義域から幾つかの点を先に選び、それらの点で与えられた方程式を満足する解を解候補の空間から選択することである。そのように選ばれた点は、選点(collocation points)と呼ぶ。 (ja) 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数に写す変換である。 工学においては、変換後の関数はもとの関数に含まれる周波数を記述していると考え、しばしばもとの関数の周波数領域表現 (frequency domain representation) と呼ばれる。言い換えれば、フーリエ変換は関数を正弦波・余弦波に分解するとも言える。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの関数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という言葉は関数の周波数領域表現のことを指すこともあるし、関数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。 (ja) In de wiskunde, meer bepaald binnen de fourieranalyse, is de (continue) fouriertransformatie een lineaire integraaltransformatie die een functie ontbindt in een continu spectrum van frequenties. In de wiskundige natuurkunde kan de fouriergetransformeerde van een signaal worden gezien als dat signaal in het "frequentiedomein". De fouriertransformatie generaliseert voor niet-periodieke functies de fourierreeks van een periodieke functie. Een generalisatie van de fouriertransformatie is de laplacetransformatie. (nl) Transformacja Fouriera – pewien operator liniowy określany na pewnych przestrzeniach funkcyjnych, elementami których mogą być funkcje zmiennych rzeczywistych. Opisuje ona rozkład tych funkcji w bazie ortonormalnej funkcji trygonometrycznych – za pomocą iloczynu skalarnego funkcji. Została nazwana na cześć Jeana Baptiste’a Josepha Fouriera. Wynikiem transformacji Fouriera jest funkcja nazywana transformatą Fouriera. (pl) Преобразование Фурье (символ ℱ) — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами. (ru) 傅里叶变换(法語:Transformation de Fourier,英語:Fourier transform,缩写:FT)是一种线性积分变换,用于函数(应用上称作「信号」)在时域和频域之间的变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学和工程学中有许多应用。傅里叶变换的作用是将函数分解为不同特征的正弦函数的和,如同化学分析来分析一个化合物的元素成分。对于一个函数,也可对其进行分析,来确定组成它的基本(正弦函数)成分。 经过傅里叶变换生成的函数 称作原函数 的傅里叶变换,应用意义上称作频谱。在特定情況下,傅里叶变换是可逆的,即将 通过逆变换可以得到其原函数 。通常情况下, 是一个实函数,而 则是一个复数值函数,其函数值作为复数可同时表示振幅和相位。高斯函数是傅里叶变换的本征函数。 (zh) В математиці, ме́тод колока́ції це метод числового розв'язання звичайних диференціальних рівнянь, диференціальних рівнянь з частковими похідними та інтегральних рівнянь. Ідея методу полягає в тому, що необхідно вибрати простір можливих розв'язків (зазвичай це многочлени до деякого степеня) і кількості точок в області (точки колокації) і вибору розв'язку, що задовільняє дане рівняння в точках колокації. (uk) Перетворення Фур'є — інтегральне перетворення однієї комплекснозначної функції дійсної змінної на іншу. Тісно пов'язане з перетворенням Лапласа та аналогічне розкладу у ряд Фур'є для неперіодичних функцій. Це перетворення розкладає дану функцію на осциляторні функції. Використовується для того, щоб розрахувати спектр частот для сигналів змінних у часі (як-от мова або електрична напруга). Перетворення названо на честь французького математика Жана Батиста Жозефа Фур'є, який ввів поняття в 1822 році. (uk) La transformada de Fourier descompon una funció temporal (un senyal) en les freqüències que la constitueixen. Aquesta descomposició resultant és una funció complexa, el valor absolut de la qual representa la quantitat de cada freqüència present en la funció original, i l'argument complex de la qual és el desfasament de la sinusoide bàsica en aquella freqüència. Si bé l'aplicació de la transformada de Fourier no es limita només a funcions temporals, el domini de la funció original se sol anomenar domini temporal. La transformada és anomenada domini freqüencial. (ca) Die Fourier-Transformation (genauer die kontinuierliche Fourier-Transformation; Aussprache: [fuʁie]) ist eine mathematische Methode aus dem Bereich der Fourier-Analyse, mit der aperiodische Signale in ein kontinuierliches Spektrum zerlegt werden. Die Funktion, die dieses Spektrum beschreibt, nennt man auch Fourier-Transformierte oder Spektralfunktion. Es handelt sich dabei um eine Integraltransformation, die nach dem Mathematiker Jean Baptiste Joseph Fourier benannt ist. Fourier führte im Jahr 1822 die Fourier-Reihe ein, die jedoch nur für periodische Signale definiert ist und zu einem diskreten Frequenzspektrum führt. (de) Ο μετασχηματισμός Fourier, το όνομά του οποίου προήλθε από τον Ζοζέφ Φουριέ, είναι ένας μαθηματικός μετασχηματισμός με πολλές εφαρμογές στη φυσική και την μηχανική. Πολύ συχνά μετατρέπει μια μαθηματική συνάρτηση του χρόνου, f(t), σε μια νέα συνάρτηση,που μερικές φορές συμβολίζεται με ή F, των οποίων η μονάδα μέτρησής τους είναι η συχνότητα με την οποία εμφανίζουν μονάδες κύκλου / δευτερόλεπτο ( Hertz ) ή ακτίνια ανά δευτερόλεπτο. Η νέα συνάρτηση είναι τότε γνωστή ως μετασχηματισμός Fourier ή και ως φάσμα συχνοτήτων της συνάρτησης f. Ο μετασχηματισμός Fourier είναι επίσης μια αντιστρέψιμη συνάρτηση. Έτσι, με δεδομένη την συνάρτηση μπορεί να προσδιοριστεί η αρχική συνάρτηση, f. Οι f και είναι, επίσης, αντίστοιχα, γνωστές ως πεδίο του χρόνου και της συχνότητας, αναπαραστάσεις του ίδιου «γεγ (el) Die Kollokation nach kleinsten Quadraten (nach lat. collocatio Anordnung, gemeinsame Stellung), engl. least squares collocation, ist ein kombiniertes Interpolations- und Ausgleichungs-Verfahren, bei dem im Gegensatz zur normalen Ausgleichsrechnung Daten mit sehr verschiedener Charakteristik verarbeitet werden können. Die Besonderheit dieser Anwendungen ist die Minimierung des mittleren Fehlers der verwendeten Messungen, indem alle Datenkonfigurationen durch eine Rotation des Geozentrums ineinander abgebildet werden (daher auch der Name Kol-lokation). (de) La transformada de Fourier, denominada así por Joseph Fourier, es una transformación matemática empleada para transformar señales entre el dominio del tiempo (o espacial) y el dominio de la frecuencia, que tiene muchas aplicaciones en la física y la ingeniería. Es reversible, siendo capaz de transformarse en cualquiera de los dominios al otro. El propio término se refiere tanto a la operación de transformación como a la función que produce. La transformada de Fourier es una aplicación que hace corresponder a una función con otra función definida de la manera siguiente: (es) En analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à une fonction intégrable définie sur ℝ et à valeurs réelles ou complexes, une autre fonction sur ℝ appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation. (fr) In analisi matematica, la trasformata di Fourier è una trasformata integrale, cioè un operatore che trasforma una funzione in un'altra funzione mediante un'integrazione, sviluppata dal matematico francese Jean Baptiste Joseph Fourier nel 1822, nel suo trattato Théorie analytique de la chaleur. Trova numerose applicazioni nella fisica e nell'ingegneria ovvero uno degli strumenti matematici maggiormente utilizzati nell'ambito delle scienze pure e applicate, permettendo di scrivere una funzione dipendente dal tempo come combinazione lineare (eventualmente continua) di funzioni di base esponenziali. La trasformata di Fourier associa a una funzione i valori dei coefficienti di questi sviluppi lineari, dandone in questo modo una rappresentazione nel dominio delle frequenze che viene spesso chiam (it) * 사인파의 진폭이 다양한 방식으로 표현되어 있다. (1)은 일반적인 첨두치peak 진폭을, (2)는 최대치와 최저치 사이의 차이를, (3)은 제곱평균제곱근을, (4)는 주기를 나타낸다. * θ만큼 위상차가 생긴 모습 푸리에 변환(Fourier transform, FT)은 시간이나 공간에 대한 함수를 시간 또는 공간 주파수 성분으로 분해하는 변환을 말한다. 종종 이 변환으로 나타난 주파수 영역에서 함수를 표현한 결과물을 가리키는 용어로도 사용된다. 조제프 푸리에가 열전도에 대한 연구에서 열 방정식의 해를 구할 때 처음 사용되었다. 시간에 대한 함수를 푸리에 변환했을 때 얻어지는 복소함수에서 각 주파수에서의 진폭은 원래 함수를 구성하던 그 주파수 성분의 크기를, 편각은 기본 사인 곡선과의 위상차(phase offset)를 나타낸다. 푸리에 변환된 결과물로부터 피변환함수를 복원할 수도 있다. 이를 증명하는 정리를 라고 한다. (ko) Em matemática, a transformada de Fourier é uma transformada integral que expressa uma função em termos de sinusoidal. Existem diversas variações diretamente relacionadas desta transformada, dependendo do tipo de função a transformar. A transformada de Fourier, epônimo a Jean-Baptiste Joseph Fourier, decompõe uma função temporal (um sinal) em frequências, tal como um acorde de um instrumento musical pode ser expresso como a amplitude (ou volume) das suas notas constituintes. A transformada de Fourier de uma função temporal é uma função de valor complexo da frequência, cujo valor absoluto representa a soma das frequências presente na função original e cujo argumento complexo é a fase de deslocamento da base sinusoidal naquela frequência. (pt) Fouriertransformen, efter Jean Baptiste Joseph Fourier, är en transform som ofta används till att överföra en funktion från tidsplanet till frekvensplanet. Där uttrycks funktionen som summan av sina sinusoidala basfunktioner, eller deltoner. En förutsättning är att basfunktionerna är ortogonala. Det gör till exempel en transformering till eller från frekvensplanet relativt enkel. Fouriertransformen är definierad för såväl tidskontinuerliga som tidsdiskreta signaler. När den används på tidsbegränsade eller periodiska signaler benämns resultatet normalt Fourierserier. (sv) |
rdfs:label | تحويل فورييه (ar) Transformada de Fourier (ca) Fourierova transformace (cs) Fourier-Transformation (de) Kollokation nach kleinsten Quadraten (de) Μετασχηματισμός Φουριέ (el) Furiera transformo (eo) Transformada de Fourier (es) Collocation method (en) Fourierren transformatu (eu) Transformasi Fourier (in) Transformation de Fourier (fr) Trasformata di Fourier (it) フーリエ変換 (ja) 選点法 (ja) 푸리에 변환 (ko) Transformacja Fouriera (pl) Fouriertransformatie (nl) Transformada de Fourier (pt) Преобразование Фурье (ru) Fouriertransform (sv) 傅里叶变换 (zh) Перетворення Фур'є (uk) Метод колокації (uk) |
owl:sameAs | dbpedia-cs:Collocation method dbpedia-pt:Collocation method freebase:Collocation method yago-res:Collocation method http://d-nb.info/gnd/4798599-9 wikidata:Collocation method wikidata:Collocation method http://am.dbpedia.org/resource/የፎሪየር_ሽግግር dbpedia-ar:Collocation method http://ast.dbpedia.org/resource/Tresformada_de_Fourier dbpedia-az:Collocation method dbpedia-bar:Collocation method dbpedia-be:Collocation method dbpedia-bg:Collocation method http://bn.dbpedia.org/resource/ফুরিয়ে_রূপান্তর dbpedia-ca:Collocation method dbpedia-da:Collocation method dbpedia-de:Collocation method dbpedia-de:Collocation method dbpedia-el:Collocation method dbpedia-eo:Collocation method dbpedia-es:Collocation method dbpedia-et:Collocation method dbpedia-eu:Collocation method dbpedia-fa:Collocation method dbpedia-fi:Collocation method dbpedia-fr:Collocation method dbpedia-gl:Collocation method dbpedia-he:Collocation method http://hi.dbpedia.org/resource/फूर्ये_रूपान्तर dbpedia-hr:Collocation method dbpedia-hu:Collocation method dbpedia-id:Collocation method dbpedia-is:Collocation method dbpedia-it:Collocation method dbpedia-ja:Collocation method dbpedia-ja:Collocation method dbpedia-kk:Collocation method dbpedia-ko:Collocation method http://lt.dbpedia.org/resource/Furjė_transformacija dbpedia-mk:Collocation method http://mn.dbpedia.org/resource/Фурье_хувиргалт http://my.dbpedia.org/resource/ဖိုရီယာ_ထရန်စဖောင်း dbpedia-nl:Collocation method dbpedia-nn:Collocation method dbpedia-no:Collocation method http://pa.dbpedia.org/resource/ਫੋਰੀਅਰ_ਪਰਿਵਰਤਨ dbpedia-pl:Collocation method dbpedia-ro:Collocation method dbpedia-ru:Collocation method dbpedia-simple:Collocation method dbpedia-sk:Collocation method dbpedia-sq:Collocation method dbpedia-sr:Collocation method http://su.dbpedia.org/resource/Transformasi_Fourier dbpedia-sv:Collocation method http://ta.dbpedia.org/resource/வூரியே_மாற்று dbpedia-th:Collocation method dbpedia-tr:Collocation method http://tt.dbpedia.org/resource/Фурье_рәвешүзгәртүе dbpedia-uk:Collocation method dbpedia-uk:Collocation method dbpedia-vi:Collocation method dbpedia-zh:Collocation method https://global.dbpedia.org/id/jMb8 |
prov:wasDerivedFrom | wikipedia-en:Collocation_method?oldid=1101629556&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Collocation_method |
is dbo:wikiPageRedirects of | dbr:Orthogonal_collocation dbr:Orthogoal_collocation dbr:Collocation_point dbr:Collocation_polynomial dbr:Spectral_collocation |
is dbo:wikiPageWikiLink of | dbr:Midpoint_method dbr:List_of_numerical_analysis_topics dbr:Analytic_element_method dbr:Gauss_pseudospectral_method dbr:Gauss–Legendre_method dbr:General_linear_methods dbr:Orthogonal_collocation dbr:Singular_boundary_method dbr:Boundary_particle_method dbr:Colocation dbr:Numerical_methods_for_ordinary_differential_equations dbr:PROPT dbr:Fractional_Chebyshev_collocation_method dbr:List_of_Runge–Kutta_methods dbr:JModelica.org dbr:Chebyshev_polynomials dbr:Trajectory_optimization dbr:Regularized_meshless_method dbr:Polynomial_interpolation dbr:Positive-definite_kernel dbr:Spectral_method dbr:Method_of_moments_(electromagnetics) dbr:Optimal_control dbr:World_Geodetic_System dbr:Model_predictive_control dbr:Finite_point_method dbr:Runge–Kutta_methods dbr:Orthogoal_collocation dbr:Collocation_point dbr:Collocation_polynomial dbr:Spectral_collocation |
is foaf:primaryTopic of | wikipedia-en:Collocation_method |