Radó's theorem (harmonic functions) (original) (raw)

About DBpedia

In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism.

Property Value
dbo:abstract In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en) En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr)
dbo:wikiPageID 1471807 (xsd:integer)
dbo:wikiPageLength 996 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1106429878 (xsd:integer)
dbo:wikiPageWikiLink dbr:Convex_set dbr:Mathematics dbr:Boundary_(topology) dbr:Connected_space dbr:Smooth_function dbr:Tibor_Radó dbr:Euclidean_space dbr:Diffeomorphism dbr:Rado's_theorem_(Ramsey_theory) dbr:Harmonic_function dbr:Homeomorphism dbc:Theorems_in_harmonic_analysis dbr:Open_set dbr:Subset dbr:Unit_disk
dbp:id 5549 (xsd:integer)
dbp:title Rado's theorem (en)
dbp:wikiPageUsesTemplate dbt:Isbn dbt:PlanetMath_attribution
dcterms:subject dbc:Theorems_in_harmonic_analysis
gold:hypernym dbr:Result
rdf:type yago:WikicatTheoremsInAnalysis yago:WikicatTheoremsInHarmonicAnalysis yago:WikicatPartialDifferentialEquations yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:MathematicalStatement106732169 yago:Message106598915 yago:PartialDifferentialEquation106670866 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293
rdfs:comment In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en) En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr)
rdfs:label Théorème de Radó (fonctions harmoniques) (fr) Radó's theorem (harmonic functions) (en)
owl:sameAs freebase:Radó's theorem (harmonic functions) wikidata:Radó's theorem (harmonic functions) dbpedia-fr:Radó's theorem (harmonic functions) https://global.dbpedia.org/id/56bhq
prov:wasDerivedFrom wikipedia-en:Radó's_theorem_(harmonic_functions)?oldid=1106429878&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Radó's_theorem_(harmonic_functions)
is dbo:knownFor of dbr:Tibor_Radó
is dbo:wikiPageRedirects of dbr:Rado's_theorem_(harmonic_functions)
is dbo:wikiPageWikiLink of dbr:Tibor_Radó dbr:Rado's_theorem dbr:List_of_theorems dbr:Rado's_theorem_(harmonic_functions)
is dbp:knownFor of dbr:Tibor_Radó
is foaf:primaryTopic of wikipedia-en:Radó's_theorem_(harmonic_functions)