Radó's theorem (harmonic functions) (original) (raw)
In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism.
Property | Value |
---|---|
dbo:abstract | In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en) En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr) |
dbo:wikiPageID | 1471807 (xsd:integer) |
dbo:wikiPageLength | 996 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1106429878 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Convex_set dbr:Mathematics dbr:Boundary_(topology) dbr:Connected_space dbr:Smooth_function dbr:Tibor_Radó dbr:Euclidean_space dbr:Diffeomorphism dbr:Rado's_theorem_(Ramsey_theory) dbr:Harmonic_function dbr:Homeomorphism dbc:Theorems_in_harmonic_analysis dbr:Open_set dbr:Subset dbr:Unit_disk |
dbp:id | 5549 (xsd:integer) |
dbp:title | Rado's theorem (en) |
dbp:wikiPageUsesTemplate | dbt:Isbn dbt:PlanetMath_attribution |
dcterms:subject | dbc:Theorems_in_harmonic_analysis |
gold:hypernym | dbr:Result |
rdf:type | yago:WikicatTheoremsInAnalysis yago:WikicatTheoremsInHarmonicAnalysis yago:WikicatPartialDifferentialEquations yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:MathematicalStatement106732169 yago:Message106598915 yago:PartialDifferentialEquation106670866 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In mathematics, Radó's theorem is a result about harmonic functions, named after Tibor Radó. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk. Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphismμ : ∂D → ∂Ω, there exists a unique harmonic function u : D → Ω such that u = μ on ∂D and u is a diffeomorphism. (en) En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque. Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphismeμ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme. (fr) |
rdfs:label | Théorème de Radó (fonctions harmoniques) (fr) Radó's theorem (harmonic functions) (en) |
owl:sameAs | freebase:Radó's theorem (harmonic functions) wikidata:Radó's theorem (harmonic functions) dbpedia-fr:Radó's theorem (harmonic functions) https://global.dbpedia.org/id/56bhq |
prov:wasDerivedFrom | wikipedia-en:Radó's_theorem_(harmonic_functions)?oldid=1106429878&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Radó's_theorem_(harmonic_functions) |
is dbo:knownFor of | dbr:Tibor_Radó |
is dbo:wikiPageRedirects of | dbr:Rado's_theorem_(harmonic_functions) |
is dbo:wikiPageWikiLink of | dbr:Tibor_Radó dbr:Rado's_theorem dbr:List_of_theorems dbr:Rado's_theorem_(harmonic_functions) |
is dbp:knownFor of | dbr:Tibor_Radó |
is foaf:primaryTopic of | wikipedia-en:Radó's_theorem_(harmonic_functions) |