dbo:abstract |
Berechenbare Ordinalzahlen sind die Ordnungstypen berechenbarer Wohlordnungen.Sie werden in der theoretischen Informatik, genauer in der Berechenbarkeitstheorie, behandelt.Die Menge der berechenbaren Ordinalzahlen bildet ein abzählbares Anfangsstück der natürlichen Anordnung aller Ordinalzahlen. (de) In mathematics, specifically computability and set theory, an ordinal is said to be computable or recursive if there is a computable well-ordering of a subset of the natural numbers having the order type . It is easy to check that is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by . The Church–Kleene ordinal is a limit ordinal. An ordinal is computable if and only if it is smaller than . Since there are only countably many computable relations, there are also only countably many computable ordinals. Thus, is countable. The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's . (en) |
dbo:wikiPageID |
5173979 (xsd:integer) |
dbo:wikiPageLength |
1784 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1039574306 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Limit_ordinal dbr:Computability_theory dbr:Countable_set dbr:Mathematics dbr:Order_type dbr:Ordinal_analysis dbr:Ordinal_notation dbr:Arithmetical_hierarchy dbr:Closure_(mathematics) dbr:Computable_set dbr:Successor_ordinal dbc:Set_theory dbr:Well-order dbr:Hartley_Rogers_Jr. dbr:Large_countable_ordinal dbr:Nonrecursive_ordinals dbr:Gerald_Sacks dbc:Computability_theory dbc:Ordinal_numbers dbr:Supremum dbr:Natural_numbers dbr:Ordinal_number dbr:Set_(mathematics) dbr:Set_theory dbr:Kleene's_O dbr:Subset |
dbp:wikiPageUsesTemplate |
dbt:Isbn dbt:Settheory-stub |
dct:subject |
dbc:Set_theory dbc:Computability_theory dbc:Ordinal_numbers |
rdfs:comment |
Berechenbare Ordinalzahlen sind die Ordnungstypen berechenbarer Wohlordnungen.Sie werden in der theoretischen Informatik, genauer in der Berechenbarkeitstheorie, behandelt.Die Menge der berechenbaren Ordinalzahlen bildet ein abzählbares Anfangsstück der natürlichen Anordnung aller Ordinalzahlen. (de) In mathematics, specifically computability and set theory, an ordinal is said to be computable or recursive if there is a computable well-ordering of a subset of the natural numbers having the order type . It is easy to check that is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's . (en) |
rdfs:label |
Berechenbare Ordinalzahl (de) Computable ordinal (en) |
owl:sameAs |
wikidata:Computable ordinal dbpedia-de:Computable ordinal http://ta.dbpedia.org/resource/மறுகட்டமைப்பு_வரிசை https://global.dbpedia.org/id/4tsJD |
prov:wasDerivedFrom |
wikipedia-en:Computable_ordinal?oldid=1039574306&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Computable_ordinal |
is dbo:wikiPageRedirects of |
dbr:Recursive_Ordinal dbr:Recursive_ordinal dbr:Constructive_ordinal |
is dbo:wikiPageWikiLink of |
dbr:Computable_function dbr:Recursive_Ordinal dbr:Recursive_ordinal dbr:Constructive_ordinal |
is foaf:primaryTopic of |
wikipedia-en:Computable_ordinal |