Semi-orthogonal matrix (original) (raw)
In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of columns exceeds the number of rows, then the rows are orthonormal vectors; but if the number of rows exceeds the number of columns, then the columns are orthonormal vectors. Equivalently, a non-square matrix A is semi-orthogonal if either In the following, consider the case where A is an m × n matrix for m > n.Then The fact that implies the isometry property for all x in Rn. For example, is a semi-orthogonal matrix.
Property | Value |
---|---|
dbo:abstract | In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of columns exceeds the number of rows, then the rows are orthonormal vectors; but if the number of rows exceeds the number of columns, then the columns are orthonormal vectors. Equivalently, a non-square matrix A is semi-orthogonal if either In the following, consider the case where A is an m × n matrix for m > n.Then The fact that implies the isometry property for all x in Rn. For example, is a semi-orthogonal matrix. A semi-orthogonal matrix A is (either A†A = I or AA† = I) and either left-invertible or right-invertible (left-invertible if it has more rows than columns, otherwise right invertible). As a linear transformation applied from the left, a semi-orthogonal matrix with more rows than columns preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection. (en) |
dbo:wikiPageID | 34417095 (xsd:integer) |
dbo:wikiPageLength | 2154 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1095824874 (xsd:integer) |
dbo:wikiPageWikiLink | dbc:Geometric_algebra dbr:Matrix_(mathematics) dbr:Linear_algebra dbc:Matrices dbr:Square_matrix dbr:Euclidean_space dbr:Reflection_(mathematics) dbr:Isometry dbr:Dot_product dbr:Real_number dbr:Rotation_(mathematics) dbr:Linear_transformation dbr:Orthonormal_vectors dbr:Semi-unitary |
dbp:wikiPageUsesTemplate | dbt:Refimprove dbt:Reflist dbt:Linear-algebra-stub |
dct:subject | dbc:Geometric_algebra dbc:Matrices |
rdf:type | yago:WikicatMatrices yago:Abstraction100002137 yago:Arrangement107938773 yago:Array107939382 yago:Group100031264 yago:Matrix108267640 |
rdfs:comment | In linear algebra, a semi-orthogonal matrix is a non-square matrix with real entries where: if the number of columns exceeds the number of rows, then the rows are orthonormal vectors; but if the number of rows exceeds the number of columns, then the columns are orthonormal vectors. Equivalently, a non-square matrix A is semi-orthogonal if either In the following, consider the case where A is an m × n matrix for m > n.Then The fact that implies the isometry property for all x in Rn. For example, is a semi-orthogonal matrix. (en) |
rdfs:label | Semi-orthogonal matrix (en) |
owl:sameAs | freebase:Semi-orthogonal matrix yago-res:Semi-orthogonal matrix wikidata:Semi-orthogonal matrix https://global.dbpedia.org/id/4uPvQ |
prov:wasDerivedFrom | wikipedia-en:Semi-orthogonal_matrix?oldid=1095824874&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Semi-orthogonal_matrix |
is dbo:wikiPageWikiLink of | dbr:Poincaré_separation_theorem dbr:Singular_value_decomposition dbr:Polar_decomposition |
is foaf:primaryTopic of | wikipedia-en:Semi-orthogonal_matrix |