T-norm fuzzy logics (original) (raw)
T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.
Property | Value |
---|---|
dbo:abstract | T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning. T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics. In order to generate a well-behaved implication, the t-norms are usually required to be left-continuous; logics of left-continuous t-norms further belong in the class of substructural logics, among which they are marked with the validity of the law of prelinearity, (A → B) ∨ (B → A). Both propositional and first-order (or higher-order) t-norm fuzzy logics, as well as their expansions by modal and other operators, are studied. Logics that restrict the t-norm semantics to a subset of the real unit interval (for example, finitely valued Łukasiewicz logics) are usually included in the class as well. Important examples of t-norm fuzzy logics are monoidal t-norm logic MTL of all left-continuous t-norms, basic logic BL of all continuous t-norms, product fuzzy logic of the product t-norm, or the of the nilpotent minimum t-norm. Some independently motivated logics belong among t-norm fuzzy logics, too, for example Łukasiewicz logic (which is the logic of the Łukasiewicz t-norm) or Gödel–Dummett logic (which is the logic of the minimum t-norm). (en) Lógicas difusas de T-norma são uma família de lógicas não clássicas, informalmente delimitada por ter uma semântica que toma o intervalo da unidade real de [0, 1] para o sistema de valores verdade e de funções chamadas de para possíveis interpretações de conjunção lógica. Elas são usadas principalmente em lógica difusa aplicada e teorias de conjuntos difusos como uma base teórica para o raciocínio aproximado. As famílias de lógica difusa de t-norma fazem parte de classes mais amplas de lógica difusa e de lógica multivalorada. A fim de gerar uma implicação bem comportada, as t-normas geralmente são necessárias que sejam funções contínuas; lógicas de t-norma de função continua pertencem à classe de lógica subestrutural, entre os quais estão assinalados com a validade da lei da pré-linearidade, (A → B) ∨ (B → A). Tanto as lógicas difusas de t-norma proposicional e de primeira ordem (ou de ordem superior), bem como suas expansões por operador modal e outros operadores, são estudados. Lógicas que restringem a semântica de t-norma a um subconjunto do intervalo de unidade real (por exemplo, Lógicas de Łukasiewicz finitamente valorizadas) são normalmente incluídos na classe. Exemplos importantes de lógicas difusas de t-norma são as lógicas monoidais de t-norma (MTL) de todas t-normas de função contínua à esquerda, de todas t-normas contínuas, produto de lógica difusa do produto de t-normas, ou o nilpotent mínimum logic da t-norma nilpotent mínima. Algunas lógicas motivadas independentemente pertencem à lógica difusa de t-norma também, como por exemplo a lógica de Łukasiewicz (que é a lógica da t-norma Łukasiewicz) ou a lógica de Gödel–Dummett (que é a lógica da t-norma mínima). (pt) |
dbo:wikiPageID | 13727501 (xsd:integer) |
dbo:wikiPageLength | 21972 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1088972822 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Product_fuzzy_logic dbr:Propositional_formula dbr:Algebraic_semantics_(mathematical_logic) dbr:Algebraic_structure dbr:Join_(mathematics) dbr:Unary_operation dbr:Deduction_theorem dbr:Intermediate_logic dbr:Intuitionistic_logic dbr:Meet_(mathematics) dbr:Modal_operator dbr:Arity dbr:Logical_conjunction dbr:Logical_implication dbr:Completeness_(logic) dbr:Computational_complexity dbr:Propositional_logic dbr:Many-valued_logic dbc:Fuzzy_logic dbr:Total_order dbr:Truth_table dbr:Truth_value dbr:Fuzzy_logic dbr:Fuzzy_set dbr:Countable dbr:Lattice_(order) dbr:T-norm dbr:Three-valued_logic dbr:First-order_logic dbr:Well-formed_formula dbr:Quantifier_(logic) dbr:Gödel dbr:Atomic_formula dbr:Involution_(mathematics) dbr:Jan_Łukasiewicz dbr:Tautology_(logic) dbr:Łukasiewicz_logic dbr:Higher-order_logic dbr:Modus_ponens dbr:BL_(logic) dbr:Idempotence dbr:Michael_Dummett dbr:Real_number dbr:Petr_Hájek dbr:Monoidal_t-norm_logic dbr:Semantics dbr:Propositional_variable dbr:Residuated_lattice dbr:Non-classical_logic dbr:Substructural_logic dbr:Left-continuous dbr:Soundness_theorem dbr:Basic_fuzzy_logic dbr:Nullary dbr:Truth-functional dbr:Nilpotent_minimum_logic dbr:ŁΠ |
dbp:wikiPageUsesTemplate | dbt:Isbn |
dct:subject | dbc:Fuzzy_logic |
gold:hypernym | dbr:Family |
rdfs:comment | T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning. (en) Lógicas difusas de T-norma são uma família de lógicas não clássicas, informalmente delimitada por ter uma semântica que toma o intervalo da unidade real de [0, 1] para o sistema de valores verdade e de funções chamadas de para possíveis interpretações de conjunção lógica. Elas são usadas principalmente em lógica difusa aplicada e teorias de conjuntos difusos como uma base teórica para o raciocínio aproximado. (pt) |
rdfs:label | Lógicas difusas de T-norma (pt) T-norm fuzzy logics (en) |
owl:sameAs | freebase:T-norm fuzzy logics wikidata:T-norm fuzzy logics dbpedia-pt:T-norm fuzzy logics https://global.dbpedia.org/id/4vjTt |
prov:wasDerivedFrom | wikipedia-en:T-norm_fuzzy_logics?oldid=1088972822&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:T-norm_fuzzy_logics |
is dbo:wikiPageRedirects of | dbr:T-norm_based_fuzzy_logic dbr:T-norm_based_fuzzy_logics dbr:T-norm_fuzzy_logic dbr:T-norm_logic dbr:T-norm_logics |
is dbo:wikiPageWikiLink of | dbr:Infinite-valued_logic dbr:Construction_of_t-norms dbr:Adaptive_neuro_fuzzy_inference_system dbr:Admissible_rule dbr:Fuzzy_logic dbr:T-norm dbr:First-order_logic dbr:Delta dbr:Involution_(mathematics) dbr:Hypercomputation dbr:Łukasiewicz_logic dbr:BL_(logic) dbr:Monoidal_t-norm_logic dbr:Finite-valued_logic dbr:T-norm_based_fuzzy_logic dbr:T-norm_based_fuzzy_logics dbr:T-norm_fuzzy_logic dbr:T-norm_logic dbr:T-norm_logics |
is foaf:primaryTopic of | wikipedia-en:T-norm_fuzzy_logics |