Logical conjunction (original) (raw)

About DBpedia

En matemàtiques, una conjunció lògica és un operador lògic que resulta veritable si els dos operadors són veritables.

thumbnail

Property Value
dbo:abstract En matemàtiques, una conjunció lògica és un operador lògic que resulta veritable si els dos operadors són veritables. (ca) Logická konjunkce (používají se pro ni symboly AND, & nebo ) je binární logická operace, jejíž hodnota je pravda, právě když obě vstupní hodnoty jsou pravda. (cs) En la logiko, la konjunkcio aŭ logika kajo (esprimita per kaj) estas (operacio), kiu nur rezultigas veran frazon, se ambaŭ frazeroj estas veraj. La operacio estadas skribita per signo & (kodo deksesuma 26 en unikodo, & en HTML) aŭ per signo ∧ (kodo deksesuma 2227 en unikodo, ∧ en HTML). Ĝia vertabelo do estas (uzataj valoroj estas mallongigoj de Vera kaj Falsa): La alia maniero de skribo de la sama vertabelo estas per uzo de nombro 1 por Vera kaj 0 por Falsa: Laŭbita logika kajo same operacias por ĉiu bito de du nombroj kaj produktas la rezultan nombron. Ekzemple (la nombroj estas deksesumaj) 0x567F & 0x8CA1 = 0x0421. Konjunkcio estas asocieca kaj komuta. En elektrotekniko logika kajo estas farata per seria konekto de ŝaltiloj. En elektroniko por logika kajo estadas specialaj , ili povas havi pli ol du enenirojn. (eo) Als Konjunktion (lateinisch coniungere ‚verbinden‘; allgemeinsprachlich: Und-Verknüpfung) wird in der Logik eine bestimmte Verknüpfung zweier Aussagen oder Aussagefunktionen bezeichnet. Gelesen wird die Konjunktion zweier Aussagen A sowie B meist als „A und B“. In der klassischen Logik ist die Verknüpfung zweier Aussagen "A und B" genau dann wahr, wenn beide Aussagenbestandteile, "A" und "B", jeweils wahr sind. Gemeint sein kann mit dem Wort Konjunktion * die verknüpfte Aussage als Ganzes (der Satz „A und B“) * das Verknüpfungszeichen (Junktor) * das Verknüpfungswort „und“ * im Fall einer wahrheitsfunktionalen Konjunktion die Wahrheitsfunktion „et“, mit der sich der Wahrheitswert der verknüpften Aussage „A und B“ aus den Wahrheitswerten ihrer Teilsätze (A, B) bestimmen lässt (de) , bi proposizioen arteko konjuntzio logikoa lokailu logiko bat da, zeinen egia balioa egiazkoa izango da bi proposizioak egiazkoak badira eta faltsua beste kasu guztietan. “A eta B” egiazkoa izango da, A egiazkoa bada eta B egiazkoa bada bakarrik. * Hizkuntza naturalean, “eta” hitza erabiltzen da euskaraz konjuntzio logiko bat adierazteko. * Multzo teorian kontzeptu baliokidea ebaketa edo ebakidura da. * Aljebra Boolearrean, konjuntzioa bi aldagaien arteko eragile bitar gisa erdiko puntuaren (·) sinboloarekin adireazten da. * Elektronikan, AND ate logikoa erabiltzen da konjuntzio logikoa ezartzeko. (eu) In logic, mathematics and linguistics, And is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or ⋅ . is true if and only if is true and is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: * In natural language, the denotation of expressions such as English "and". * In programming languages, the short-circuit and control structure. * In set theory, intersection. * In lattice theory, logical conjunction (greatest lower bound). * In predicate logic, universal quantification. (en) En razonamiento formal, una conjunción lógica entre dos proposiciones es un conector lógico cuyo valor de la verdad resulta en cierto solo si ambas proposiciones son ciertas, y en falso de cualquier otra forma.​ Existen diferentes contextos donde se utiliza la conjunción lógica. En lenguajes formales, el conectivo "y" se utiliza en español para simbolizar una conjunción lógica. La noción equivalente en la teoría de conjuntos es la intersección. En álgebra booleana, la conjunción como operador binario entre dos variables se representa con el símbolo de punto medio ( · ). En electrónica, una puerta AND es una puerta lógica que implementa la conjunción lógica. (es) En logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. (fr) Dalam logika dan bidang teknik yang memakainya, konjungsi, atau dan, adalah operator logika dalam kalkulus proposisional.Hasil dari dua proposisi juga disebut konjungsi mereka.Hasil konjungsi adalah benar jika kedua proposisinya benar; jika tidak, hasilnya adalah salah. (in) 논리곱(conjunction, AND)이란 수리 논리학에서, 주어진 복수 명제 모두가 참인지를 나타내는 논리 연산이다. 두 명제 P, Q에 대한 논리곱을 (P ∧ Q)라고 기록하고,「P 그리고 Q」라고 읽는다. (ko) In de wiskunde en de logica is logische conjunctie (symbool: , &, &&, EN of AND) een logische operator die twee proposities met elkaar verbindt, zodanig dat de conjunctie van beide waar is als beide operanden waar zijn. (nl) In logica, una congiunzione logica è un connettivo logico attraverso il quale, a partire da due proposizioni, si forma una nuova proposizione chiamata appunto congiunzione. Date due proposizioni e la congiunzione di e , indicata con , è vera soltanto nel caso in cui e siano entrambe vere, mentre è falsa in tutti gli altri casi possibili. Quando si hanno due enunciati aperti e , l' di corrisponde all'intersezione tra i due insiemi di verità. In effetti, la congiunzione gode delle stesse proprietà dell'intersezione. La congiunzione in algebra booleana è indicata con l'operatore AND. Tabella di verità: (it) 数理論理学において論理積(ろんりせき、英: logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 (ja) A conjunção é uma operação na lógica matemática, que pode ser ligada à operação de interseção de conjuntos. A conjunção é representada pelo conectivo lógico ∧, e em programação por AND ou && que = a letra EEx:João ∧ Maria vão ao shoppingA conjunção lógica pode ainda ser representada pelo símbolo do produto. (pt) Koniunkcja – zdanie złożone mające postać p i q, gdzie p, q są zdaniami. W rachunku zdań koniunkcję zapisuje się symbolicznie jako: Przez koniunkcję rozumie się też zdanie mające postać i... i Koniunkcję można zdefiniować precyzyjniej jako dwuargumentowe działanie określone w zbiorze zdań lub funkcji zdaniowych, które zdaniom p, q przyporządkowuje zdanie p i q. Koniunkcja dwóch zdań p i q jest zdaniem prawdziwym wtedy i tylko wtedy, gdy oba zdania p, q są zdaniami prawdziwymi. Niekiedy słowo koniunkcja odnosi się również do spójnika. (pl) Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И». Конъюнкция может быть бинарной операцией (т. e. иметь два операнда), тернарной операцией (т. e. иметь три операнда), или n-арной операцией (т. e. иметь n операндов). (ru) Inom logik och matematik är konjunktion ett konnektiv, som betecknas med symbolen eller symbolen , och utläses som "och". En sats, vars delar är förbundna med detta konnektiv kallas, även denna, för en konjunktion. En sådan sats är sann, om och endast om alla dess operander är sanna. Med A och B symboliserande påståenden, utläses satsen A B som: A och B. Den skall således tolkas som sann, om och endast om båda satserna är sanna. Konnektivet , kan tillsammans med exempelvis konnektivet för negation uttrycka varje annat konnektiv inom satslogiken. Inom boolesk algebra skrivs konjunktion med multiplikationstecknet "·". (sv) 在逻辑和数学中,逻辑合取或逻辑与或且是一个二元逻辑運算符。如果其两个变量的真值都为“真”,其结果为“真”,否则其结果为“假”。 (zh) Кон'юнкція (лат. conjangere — об'єднувати) (операція AND) — двомісна логічна операція, що має значення «істина», якщо всі операнди мають значення «істина». Операція передбачає вживання сполучника «і» в логічних висловлюваннях. (uk)
dbo:thumbnail wiki-commons:Special:FilePath/Venn0001.svg?width=300
dbo:wikiPageExternalLink http://mathworld.wolfram.com/Conjunction.html https://web.archive.org/web/20170506173821/http:/www.math.hawaii.edu/~ramsey/Logic/And.html%7Carchive-date= http://www.math.hawaii.edu/~ramsey/Logic/And.html%7Ctitle=
dbo:wikiPageID 18152 (xsd:integer)
dbo:wikiPageLength 17012 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1120090987 (xsd:integer)
dbo:wikiPageWikiLink dbr:Predicate_logic dbr:Propositional_calculus dbr:Monotonic_function dbr:Universal_quantification dbr:Binary_numeral_system dbr:Bitwise_AND dbr:Boolean_algebra_(logic) dbr:Validity_(logic) dbr:De_Morgan's_laws dbr:Short-circuit_evaluation dbr:Commutativity dbr:And-inverter_graph dbr:Mathematics dbr:SQL dbr:Subnetwork dbr:English_language dbr:Multiplication dbr:Bitstring dbc:Logical_connectives dbr:Conjunction_elimination dbr:Conjunction_introduction dbr:Arity dbr:Bent_function dbr:Logic dbr:Logical_operator dbr:Logical_value dbr:Commuting_probability dbr:Denotation dbr:Fréchet_inequalities dbr:Identity_element dbr:Polish_notation dbr:Proposition dbr:Material_nonimplication dbc:Semantics dbr:Truth_function dbr:Truth_table dbr:Hadamard_transform dbr:Lattice_(order) dbr:Linguistics dbr:Logical_graph dbr:Grammatical_conjunction dbr:Curry–Howard_correspondence dbr:Database dbr:Exclusive_or dbr:First-order_logic dbr:Digital_electronics dbr:Logical_connective dbr:Logical_disjunction dbr:Argument_form dbr:Greatest_lower_bound dbr:Intersection_(set_theory) dbr:Jan_Łukasiewicz dbr:Peano–Russell_notation dbr:Associativity dbr:AND_gate dbr:Distributivity dbr:Boolean-valued_function dbr:Boolean_conjunctive_query dbr:Boolean_domain dbr:Boolean_function dbr:Computer_networking dbr:Idempotence dbr:If_and_only_if dbr:Operation_(mathematics) dbr:Set_theory dbr:Words dbr:Mask_(computing) dbr:IP_address dbr:Linear dbr:Natural_language dbr:Programming_language dbr:Product_type dbr:Vacuous_truth dbr:Boolean_algebra_topics dbr:Control_structure dbr:Idempotency dbr:Logical_negation dbr:Logical_operation dbr:File:Venn_0000_0001.svg dbr:File:Venn_0001_0001.svg dbr:File:AND_Gate_diagram.svg dbr:File:Venn_0000_0011.svg dbr:File:Venn_0000_0101.svg dbr:File:Venn_0001_0000.svg dbr:File:Venn_0001_0100.svg dbr:File:Venn_0001_0101.svg dbr:File:Venn_0011_0000.svg dbr:File:Venn_0011_1111.svg dbr:File:Venn_1111_1011.svg dbr:File:Venn0001.svg dbr:File:Venn01.svg dbr:File:Venn0111.svg dbr:File:Venn_0000_1111.svg dbr:File:Venn_0011_1100.svg dbr:File:Venn_0101_0101.svg dbr:File:Venn_1011_1011.svg dbr:File:Multigrade_operator_AND.svg
dbp:0Preserving yes (en)
dbp:1Preserving yes (en)
dbp:affine no (en)
dbp:id p/c025080 (en)
dbp:logicGate AND_ANSI.svg (en)
dbp:monotone no (en)
dbp:otherTitles AND (en)
dbp:selfDual yes (en)
dbp:title Conjunction (en) Logical conjunction (en)
dbp:vennDiagram Venn0001.svg (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:No2 dbt:! dbt:Anchor dbt:Authority_control dbt:Cite_web dbt:Colbegin dbt:Colend dbt:Commons_category dbt:Distinguish dbt:Math dbt:Reflist dbt:Short_description dbt:Small dbt:Yes2 dbt:Mathematical_logic dbt:Common_logical_symbols dbt:Infobox_logical_connective dbt:Logical_connectives
dcterms:subject dbc:Logical_connectives dbc:Semantics
rdf:type owl:Thing yago:WikicatLogicSymbols yago:WikicatLogicalConnectives yago:Abstraction100002137 yago:Communication100033020 yago:Conjunction106325826 yago:FunctionWord106291318 yago:LanguageUnit106284225 yago:Part113809207 yago:Relation100031921 yago:Word106286395 yago:Signal106791372 yago:Symbol106806469
rdfs:comment En matemàtiques, una conjunció lògica és un operador lògic que resulta veritable si els dos operadors són veritables. (ca) Logická konjunkce (používají se pro ni symboly AND, & nebo ) je binární logická operace, jejíž hodnota je pravda, právě když obě vstupní hodnoty jsou pravda. (cs) En logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. (fr) Dalam logika dan bidang teknik yang memakainya, konjungsi, atau dan, adalah operator logika dalam kalkulus proposisional.Hasil dari dua proposisi juga disebut konjungsi mereka.Hasil konjungsi adalah benar jika kedua proposisinya benar; jika tidak, hasilnya adalah salah. (in) 논리곱(conjunction, AND)이란 수리 논리학에서, 주어진 복수 명제 모두가 참인지를 나타내는 논리 연산이다. 두 명제 P, Q에 대한 논리곱을 (P ∧ Q)라고 기록하고,「P 그리고 Q」라고 읽는다. (ko) In de wiskunde en de logica is logische conjunctie (symbool: , &, &&, EN of AND) een logische operator die twee proposities met elkaar verbindt, zodanig dat de conjunctie van beide waar is als beide operanden waar zijn. (nl) 数理論理学において論理積(ろんりせき、英: logical conjunction)とは、与えられた複数の命題のいずれもが例外なく真であることを示す論理演算である。合接(ごうせつ)、連言(れんげん、れんごん)とも呼び、ANDとよく表す。 二つの命題 P, Q に対する論理積を P ∧ Q と書き、「P かつ Q」や「P そして Q」などと読む。 (ja) A conjunção é uma operação na lógica matemática, que pode ser ligada à operação de interseção de conjuntos. A conjunção é representada pelo conectivo lógico ∧, e em programação por AND ou && que = a letra EEx:João ∧ Maria vão ao shoppingA conjunção lógica pode ainda ser representada pelo símbolo do produto. (pt) Koniunkcja – zdanie złożone mające postać p i q, gdzie p, q są zdaniami. W rachunku zdań koniunkcję zapisuje się symbolicznie jako: Przez koniunkcję rozumie się też zdanie mające postać i... i Koniunkcję można zdefiniować precyzyjniej jako dwuargumentowe działanie określone w zbiorze zdań lub funkcji zdaniowych, które zdaniom p, q przyporządkowuje zdanie p i q. Koniunkcja dwóch zdań p i q jest zdaniem prawdziwym wtedy i tylko wtedy, gdy oba zdania p, q są zdaniami prawdziwymi. Niekiedy słowo koniunkcja odnosi się również do spójnika. (pl) Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И». Конъюнкция может быть бинарной операцией (т. e. иметь два операнда), тернарной операцией (т. e. иметь три операнда), или n-арной операцией (т. e. иметь n операндов). (ru) 在逻辑和数学中,逻辑合取或逻辑与或且是一个二元逻辑運算符。如果其两个变量的真值都为“真”,其结果为“真”,否则其结果为“假”。 (zh) Кон'юнкція (лат. conjangere — об'єднувати) (операція AND) — двомісна логічна операція, що має значення «істина», якщо всі операнди мають значення «істина». Операція передбачає вживання сполучника «і» в логічних висловлюваннях. (uk) Als Konjunktion (lateinisch coniungere ‚verbinden‘; allgemeinsprachlich: Und-Verknüpfung) wird in der Logik eine bestimmte Verknüpfung zweier Aussagen oder Aussagefunktionen bezeichnet. Gelesen wird die Konjunktion zweier Aussagen A sowie B meist als „A und B“. In der klassischen Logik ist die Verknüpfung zweier Aussagen "A und B" genau dann wahr, wenn beide Aussagenbestandteile, "A" und "B", jeweils wahr sind. Gemeint sein kann mit dem Wort Konjunktion (de) En la logiko, la konjunkcio aŭ logika kajo (esprimita per kaj) estas (operacio), kiu nur rezultigas veran frazon, se ambaŭ frazeroj estas veraj. La operacio estadas skribita per signo & (kodo deksesuma 26 en unikodo, & en HTML) aŭ per signo ∧ (kodo deksesuma 2227 en unikodo, ∧ en HTML). Ĝia vertabelo do estas (uzataj valoroj estas mallongigoj de Vera kaj Falsa): La alia maniero de skribo de la sama vertabelo estas per uzo de nombro 1 por Vera kaj 0 por Falsa: Konjunkcio estas asocieca kaj komuta. En elektrotekniko logika kajo estas farata per seria konekto de ŝaltiloj. (eo) , bi proposizioen arteko konjuntzio logikoa lokailu logiko bat da, zeinen egia balioa egiazkoa izango da bi proposizioak egiazkoak badira eta faltsua beste kasu guztietan. “A eta B” egiazkoa izango da, A egiazkoa bada eta B egiazkoa bada bakarrik. (eu) En razonamiento formal, una conjunción lógica entre dos proposiciones es un conector lógico cuyo valor de la verdad resulta en cierto solo si ambas proposiciones son ciertas, y en falso de cualquier otra forma.​ Existen diferentes contextos donde se utiliza la conjunción lógica. En lenguajes formales, el conectivo "y" se utiliza en español para simbolizar una conjunción lógica. La noción equivalente en la teoría de conjuntos es la intersección. En álgebra booleana, la conjunción como operador binario entre dos variables se representa con el símbolo de punto medio ( · ). (es) In logic, mathematics and linguistics, And is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or ⋅ . is true if and only if is true and is true, otherwise it is false. An operand of a conjunction is a conjunct. Beyond logic, the term "conjunction" also refers to similar concepts in other fields: (en) In logica, una congiunzione logica è un connettivo logico attraverso il quale, a partire da due proposizioni, si forma una nuova proposizione chiamata appunto congiunzione. Date due proposizioni e la congiunzione di e , indicata con , è vera soltanto nel caso in cui e siano entrambe vere, mentre è falsa in tutti gli altri casi possibili. Quando si hanno due enunciati aperti e , l' di corrisponde all'intersezione tra i due insiemi di verità. In effetti, la congiunzione gode delle stesse proprietà dell'intersezione. La congiunzione in algebra booleana è indicata con l'operatore AND. (it) Inom logik och matematik är konjunktion ett konnektiv, som betecknas med symbolen eller symbolen , och utläses som "och". En sats, vars delar är förbundna med detta konnektiv kallas, även denna, för en konjunktion. En sådan sats är sann, om och endast om alla dess operander är sanna. Med A och B symboliserande påståenden, utläses satsen A B som: A och B. Den skall således tolkas som sann, om och endast om båda satserna är sanna. Konnektivet , kan tillsammans med exempelvis konnektivet för negation uttrycka varje annat konnektiv inom satslogiken. (sv)
rdfs:label عطف منطقي (ar) Conjunció lògica (ca) Konjunkce (logika) (cs) Konjunktion (Logik) (de) Konjunkcio (logiko) (eo) Conjunción lógica (es) Konjuntzio logiko (eu) Conjonction logique (fr) Logika konjungsi (in) Congiunzione logica (it) Logical conjunction (en) 論理積 (ja) 논리곱 (ko) Logische conjunctie (nl) Koniunkcja (logika) (pl) Конъюнкция (ru) Conjunção lógica (pt) Konjunktion (logik) (sv) 逻辑与 (zh) Кон'юнкція (uk)
owl:differentFrom dbr:Caret dbr:Exterior_Algebra dbr:Turned_V dbr:Lambda
owl:sameAs freebase:Logical conjunction http://d-nb.info/gnd/4164990-4 http://sw.cyc.com/concept/Mx4rgbLR0UdkEdaEZwACs1u19A yago-res:Logical conjunction wikidata:Logical conjunction dbpedia-ar:Logical conjunction dbpedia-bg:Logical conjunction dbpedia-ca:Logical conjunction dbpedia-cs:Logical conjunction dbpedia-da:Logical conjunction dbpedia-de:Logical conjunction dbpedia-eo:Logical conjunction dbpedia-es:Logical conjunction dbpedia-et:Logical conjunction dbpedia-eu:Logical conjunction dbpedia-fa:Logical conjunction dbpedia-fi:Logical conjunction dbpedia-fr:Logical conjunction dbpedia-he:Logical conjunction dbpedia-hu:Logical conjunction http://hy.dbpedia.org/resource/Կոնյունկցիա dbpedia-id:Logical conjunction dbpedia-it:Logical conjunction dbpedia-ja:Logical conjunction dbpedia-kk:Logical conjunction dbpedia-ko:Logical conjunction http://ky.dbpedia.org/resource/Конъюнкция dbpedia-lmo:Logical conjunction http://lt.dbpedia.org/resource/Konjunkcija_(logika) dbpedia-mk:Logical conjunction dbpedia-nl:Logical conjunction dbpedia-no:Logical conjunction dbpedia-pl:Logical conjunction dbpedia-pms:Logical conjunction dbpedia-pt:Logical conjunction dbpedia-ru:Logical conjunction dbpedia-sh:Logical conjunction dbpedia-simple:Logical conjunction dbpedia-sk:Logical conjunction dbpedia-sl:Logical conjunction dbpedia-sq:Logical conjunction dbpedia-sr:Logical conjunction dbpedia-sv:Logical conjunction dbpedia-th:Logical conjunction dbpedia-uk:Logical conjunction dbpedia-zh:Logical conjunction https://global.dbpedia.org/id/qotX
prov:wasDerivedFrom wikipedia-en:Logical_conjunction?oldid=1120090987&ns=0
foaf:depiction wiki-commons:Special:FilePath/Venn0111.svg wiki-commons:Special:FilePath/AND_ANSI.svg wiki-commons:Special:FilePath/AND_Gate_diagram.svg wiki-commons:Special:FilePath/Multigrade_operator_AND.svg wiki-commons:Special:FilePath/Venn0001.svg wiki-commons:Special:FilePath/Venn01.svg wiki-commons:Special:FilePath/Venn_0000_0001.svg wiki-commons:Special:FilePath/Venn_0000_0011.svg wiki-commons:Special:FilePath/Venn_0000_0101.svg wiki-commons:Special:FilePath/Venn_0000_1111.svg wiki-commons:Special:FilePath/Venn_0001_0001.svg wiki-commons:Special:FilePath/Venn_0001_0101.svg wiki-commons:Special:FilePath/Venn_0011_1111.svg wiki-commons:Special:FilePath/Venn_0101_0101.svg wiki-commons:Special:FilePath/Venn_1011_1011.svg wiki-commons:Special:FilePath/Venn_1111_1011.svg
foaf:isPrimaryTopicOf wikipedia-en:Logical_conjunction
is dbo:wikiPageDisambiguates of dbr:Conjunction
is dbo:wikiPageRedirects of dbr:⋀ dbr:⋏ dbr:⟎ dbr:⟑ dbr:Logical_Conjunction dbr:And(logic) dbr:And_(logic) dbr:And_operator dbr:Inclusive_and dbr:Conjunct_(logic) dbr:Conjunction_(logic) dbr:Logical_AND dbr:Logical_and dbr:Logical_product
is dbo:wikiPageWikiLink of dbr:Canonical_normal_form dbr:Caret_notation dbr:Preorder dbr:Primitive_recursive_function dbr:Prolog dbr:Propositional_calculus dbr:Quantum_logic_gate dbr:List_of_XML_and_HTML_character_entity_references dbr:Negation_normal_form dbr:MD5 dbr:Monotonic_function dbr:Sheffer_stroke dbr:Universal_quantification dbr:Queue_jump dbr:Semigroup_with_two_elements dbr:Bio-inspired_computing dbr:Bitwise_operation dbr:Boolean_data_type dbr:Description_logic dbr:Algebraic_normal_form dbr:Algebraic_specification dbr:List_of_mathematical_symbols_by_subject dbr:List_of_set_identities_and_relations dbr:Relational_algebra dbr:Dadda_multiplier dbr:Validity_(logic) dbr:De_Morgan's_laws dbr:Decision_list dbr:Decision_tree_learning dbr:Dedekind_number dbr:Deflationary_theory_of_truth dbr:⋀ dbr:⋏ dbr:⟎ dbr:⟑ dbr:Destructive_dilemma dbr:Index_of_logic_articles dbr:Indistinguishability_obfuscation dbr:Infinite_expression dbr:Intersection dbr:Intuitionistic_logic dbr:Quantum_computing dbr:Universal_algebra dbr:Let_expression dbr:Lindenbaum–Tarski_algebra dbr:List_of_logic_symbols dbr:List_of_rules_of_inference dbr:Intersection_(disambiguation) dbr:Post's_lattice dbr:Rayo's_number dbr:Typographic_approximation dbr:Web_query dbr:Weighted_automaton dbr:Computer dbr:Conceptual_clustering dbr:Corresponding_conditional dbr:And-inverter_graph dbr:And/or dbr:Material_conditional dbr:Median_graph dbr:SPARQL dbr:Generalized_Petersen_graph dbr:NAR_2 dbr:Negation dbr:Prenex_normal_form dbr:Principle_of_distributivity dbr:Chrysippus dbr:Emmy_Noether dbr:English_relative_clauses dbr:Epistemic_closure dbr:Free_variables_and_bound_variables dbr:Frege's_propositional_calculus dbr:Function_composition dbr:Glossary_of_computer_science dbr:Gottfried_Wilhelm_Leibniz dbr:Monoid dbr:Mxparser dbr:Naive_set_theory dbr:Conflict-driven_clause_learning dbr:Congruence_relation dbr:Conjunction_(grammar) dbr:Conjunction_elimination dbr:Conjunction_fallacy dbr:Conjunction_introduction dbr:Conjunctive_grammar dbr:Conjunctive_normal_form dbr:Conjunctive_query dbr:Contraposition dbr:Control_table dbr:Conway's_Game_of_Life dbr:Cook–Levin_theorem dbr:Correlative-based_fallacies dbr:Cosmological_argument dbr:Equality-generating_dependency dbr:Andrzej_Grzegorczyk dbr:Arity dbr:Linear_logic dbr:And dbr:Anding dbr:Logical_NOR dbr:Loglan dbr:Machine_learning dbr:Stanford/ITS_character_set dbr:Stanford_Extended_ASCII dbr:Clause_(logic) dbr:Clock_(model_checking) dbr:Commutativity_of_conjunction dbr:Complex_question dbr:Complexity_class dbr:Embedded_dependency dbr:Empty_product dbr:Fréchet_inequalities dbr:Full-text_search dbr:Functional_completeness dbr:Hennessy–Milner_logic dbr:Pneumatics dbr:Polish_notation dbr:Primitive_recursive_arithmetic dbr:Probability_bounds_analysis dbr:Speak_&_Spell_(toy) dbr:Spectrum_of_a_sentence dbr:Symmetry dbr:Many-valued_logic dbr:Material_nonimplication dbr:McCarthy_Formalism dbr:Axiom_schema_of_specification dbr:Bullet_(typography) dbr:Business_Process_Model_and_Notation dbr:C._I._Lewis dbr:CHIP-8 dbr:Action_description_language dbr:Adjoint_functors dbr:Admissible_rule dbr:Truth_table dbr:Truth_value dbr:Turned_v dbr:Type_theory dbr:Wedge_(symbol) dbr:Willard_Van_Orman_Quine dbr:Distributive_lattice dbr:Distributive_property dbr:Fuzzy_logic dbr:Game_semantics dbr:Juxtaposition dbr:Law_of_thought dbr:Laws_of_Form dbr:List_of_Boolean_algebra_topics dbr:Logic_alphabet dbr:Logical_biconditional dbr:Logical_harmony dbr:Logical_hexagon dbr:Logical_truth dbr:Lojban_grammar dbr:Minimal_logic dbr:Query_optimization dbr:T-norm dbr:Paraconsistent_logic dbr:Prolog_syntax_and_semantics dbr:AT&T_Corp._v._Excel_Communications,_Inc. dbr:Alfred_Tarski dbr:Ampersand dbr:3APL dbr:Curry–Howard_correspondence dbr:DEC_Alpha dbr:EGanges dbr:Alternating_decision_tree dbr:Eugene_McDonnell dbr:Exclusive_or dbr:First-order_logic dbr:Flix_(programming_language) dbr:And–or_tree dbr:Barbershop_paradox dbr:Diode dbr:Falsing dbr:Floyd–Warshall_algorithm dbr:Glider_(Conway's_Life) dbr:Glossary_of_Principia_Mathematica dbr:History_of_mathematical_notation dbr:Logical_connective dbr:Logical_constant dbr:Series_and_parallel_circuits dbr:Logical_disjunction dbr:Logic_gate dbr:Predicate_functor_logic dbr:Quantifier_(logic) dbr:Rete_algorithm dbr:Rule_Interchange_Format dbr:Syntactic_predicate dbr:2-satisfiability dbr:2-valued_morphism dbr:Atomic_sentence dbr:Interpunct dbr:Intersection_(set_theory) dbr:JavaScript_syntax dbr:Backtracking dbr:Tautology_(logic) dbr:Cox's_theorem dbr:Sequence_point dbr:Wu's_method_of_characteristic_set dbr:Atari_BASIC dbr:Atari_ST_character_set dbr:AND_gate dbr:APL_syntax_and_symbols dbr:Absorbing_element dbr:Absorption_(logic) dbr:Absorption_law dbr:Józef_Maria_Bocheński dbr:Binary_decision_diagram dbr:Binary_number dbr:Bird–Meertens_formalism dbr:Bit_blit dbr:Bit_field dbr:Bitboard dbr:Bitwise_operations_in_C dbr:Coincidence_circuit dbr:Hexagonal_Efficient_Coordinate_System dbr:HiLog dbr:Jaccard_index dbr:Tautology_(rule_of_inference) dbr:Shea_Zellweger dbr:XOR_gate dbr:Red–black_tree dbr:Discrete_space dbr:Disjunctive_normal_form dbr:Axiom_of_union dbr:Margaret_Hamilton_(software_engineer) dbr:Boolean_algebra dbr:Boolean_algebra_(structure) dbr:Boolean_conjunctive_query dbr:Boolean_expression dbr:Boolean_function dbr:Boolean_grammar dbr:Boolean_ring dbr:Boolean_satisfiability_problem dbr:CARINE dbr:Photochemical_logic_gate dbr:Polynomial_kernel dbr:PostBQP dbr:Circuit_(computer_science) dbr:Class_invariant dbr:Fredkin_gate dbr:Free_choice_inference dbr:Conjunction dbr:Guard_(computer_science) dbr:Idempotence dbr:Inequality_(mathematics) dbr:Instruction_set_architecture dbr:Klingon_grammar dbr:Knight_Lore dbr:Mersenne_Twister dbr:Operator_(computer_programming) dbr:Operators_in_C_and_C++ dbr:Carry-lookahead_adder dbr:Categorial_grammar dbr:Raven_paradox dbr:Read-once_function dbr:Search_engine_(computing) dbr:X86_instruction_listings dbr:XOR_cipher dbr:Sequent_calculus dbr:Unit_interval dbr:Monoidal_t-norm_logic dbr:SAT_solver dbr:Satisfiability dbr:Satisfiability_modulo_theories dbr:Selection_(relational_algebra) dbr:Sequent dbr:Logical_Conjunction dbr:Exportation_(logic) dbr:ISO_31-11 dbr:List_of_terms_relating_to_algorithms_and_data_structures dbr:Propositional_variable dbr:Randolph_diagram dbr:Probabilistic_logic dbr:Existential_quantification dbr:Fitch's_paradox_of_knowability dbr:Product_type dbr:Moser–de_Bruijn_sequence dbr:Physicalism dbr:Vacuous_truth dbr:Set-builder_notation dbr:Simple_theorems_in_the_algebra_of_sets dbr:Solution_set dbr:T-norm_fuzzy_logics dbr:Non-classical_logic dbr:Package-deal_fallacy dbr:Representativeness_heuristic dbr:Tuple-generating_dependency dbr:Zhegalkin_polynomial dbr:Outline_of_logic dbr:Subjective_logic dbr:Truth-value_semantics dbr:Substructural_logic dbr:Vacuum-tube_computer dbr:Stoic_logic dbr:And(logic) dbr:And_(logic) dbr:And_operator dbr:Inclusive_and dbr:Conjunct_(logic)
is foaf:primaryTopic of wikipedia-en:Logical_conjunction