Toeplitz algebra (original) (raw)

About DBpedia

En théorie des algèbres d'opérateurs, l'algèbre de Toeplitz est la C*-algèbre universelle engendrée par une isométrie non unitaire. En clair, ce générateur vérifie : Si on définit l'élément de cette algèbre par , on obtient, comme pour toute isométrie, les relations :

Property Value
dbo:abstract En théorie des algèbres d'opérateurs, l'algèbre de Toeplitz est la C*-algèbre universelle engendrée par une isométrie non unitaire. En clair, ce générateur vérifie : Si on définit l'élément de cette algèbre par , on obtient, comme pour toute isométrie, les relations : (fr) In operator algebras, the Toeplitz algebra is the C*-algebra generated by the unilateral shift on the Hilbert space l2(N). Taking l2(N) to be the Hardy space H2, the Toeplitz algebra consists of elements of the form where Tf is a Toeplitz operator with continuous symbol and K is a compact operator. Toeplitz operators with continuous symbols commute modulo the compact operators. So the Toeplitz algebra can be viewed as the C*-algebra extension of continuous functions on the circle by the compact operators. This extension is called the Toeplitz extension. By Atkinson's theorem, an element of the Toeplitz algebra Tf + K is a Fredholm operator if and only if the symbol f of Tf is invertible. In that case, the Fredholm index of Tf + K is precisely the winding number of f, the equivalence class of f in the fundamental group of the circle. This is a special case of the Atiyah-Singer index theorem. Wold decomposition characterizes proper isometries acting on a Hilbert space. From this, together with properties of Toeplitz operators, one can conclude that the Toeplitz algebra is the universal C*-algebra generated by a proper isometry; this is Coburn's theorem. (en)
dbo:wikiPageID 14598622 (xsd:integer)
dbo:wikiPageLength 1758 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 698781582 (xsd:integer)
dbo:wikiPageWikiLink dbr:Atiyah-Singer_index_theorem dbr:Compact_operator_on_Hilbert_space dbr:Fundamental_group dbr:Hardy_space dbr:H_square dbr:Hilbert_space dbr:Atkinson's_theorem dbr:Isometry dbc:C*-algebras dbr:Toeplitz_operator dbr:Winding_number dbr:C*-algebra dbr:Fredholm_operator dbr:Operator_algebras dbr:Sequence_space dbr:Universal_C*-algebra dbr:Unilateral_shift dbr:Wold_decomposition
dct:subject dbc:C*-algebras
rdfs:comment En théorie des algèbres d'opérateurs, l'algèbre de Toeplitz est la C*-algèbre universelle engendrée par une isométrie non unitaire. En clair, ce générateur vérifie : Si on définit l'élément de cette algèbre par , on obtient, comme pour toute isométrie, les relations : (fr) In operator algebras, the Toeplitz algebra is the C*-algebra generated by the unilateral shift on the Hilbert space l2(N). Taking l2(N) to be the Hardy space H2, the Toeplitz algebra consists of elements of the form where Tf is a Toeplitz operator with continuous symbol and K is a compact operator. Toeplitz operators with continuous symbols commute modulo the compact operators. So the Toeplitz algebra can be viewed as the C*-algebra extension of continuous functions on the circle by the compact operators. This extension is called the Toeplitz extension. (en)
rdfs:label Algèbre de Toeplitz (fr) Toeplitz algebra (en)
owl:sameAs freebase:Toeplitz algebra wikidata:Toeplitz algebra dbpedia-fr:Toeplitz algebra https://global.dbpedia.org/id/2dzkL
prov:wasDerivedFrom wikipedia-en:Toeplitz_algebra?oldid=698781582&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Toeplitz_algebra
is dbo:wikiPageDisambiguates of dbr:Toeplitz
is dbo:wikiPageRedirects of dbr:Toeplitz_system
is dbo:wikiPageWikiLink of dbr:Bunce–Deddens_algebra dbr:Irrational_rotation dbr:Otto_Toeplitz dbr:Graph_C*-algebra dbr:Toeplitz dbr:Wold's_decomposition dbr:Toeplitz_system
is foaf:primaryTopic of wikipedia-en:Toeplitz_algebra