Sequence space (original) (raw)
Ein Folgenraum ist ein in der Mathematik betrachteter Vektorraum, dessen Elemente Zahlenfolgen sind.Viele in der Funktionalanalysis auftretende Vektorräume sind Folgenräume oder können durch solche repräsentiert werden.Zu den Beispielen zählen u. a. die wichtigen Räume wie aller beschränkten Folgen oder aller gegen 0 konvergenten Folgen.Die Folgenräume bieten vielfältige Möglichkeiten zur Konstruktion von Beispielen und können daher auch als eine Spielwiese für Funktionalanalytiker betrachtet werden.
Property | Value |
---|---|
dbo:abstract | Ein Folgenraum ist ein in der Mathematik betrachteter Vektorraum, dessen Elemente Zahlenfolgen sind.Viele in der Funktionalanalysis auftretende Vektorräume sind Folgenräume oder können durch solche repräsentiert werden.Zu den Beispielen zählen u. a. die wichtigen Räume wie aller beschränkten Folgen oder aller gegen 0 konvergenten Folgen.Die Folgenräume bieten vielfältige Möglichkeiten zur Konstruktion von Beispielen und können daher auch als eine Spielwiese für Funktionalanalytiker betrachtet werden. (de) En mathématiques, l'espace ℓp est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. (fr) In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. The most important sequence spaces in analysis are the ℓp spaces, consisting of the p-power summable sequences, with the p-norm. These are special cases of Lp spaces for the counting measure on the set of natural numbers. Other important classes of sequences like convergent sequences or null sequences form sequence spaces, respectively denoted c and c0, with the sup norm. Any sequence space can also be equipped with the topology of pointwise convergence, under which it becomes a special kind of Fréchet space called FK-space. (en) In matematica, in particolare in analisi funzionale, lo spazio delle successioni è uno spazio funzionale formato da tutte le successioni reali o complesse. Si tratta dell'insieme delle funzioni definite sull'insieme dei numeri naturali a valori in o . Definendo una somma, detta puntuale: e un prodotto per scalari: lo spazio delle successioni viene dotato della struttura di spazio vettoriale. Solitamente, vengono studiati appropriati sottospazi dello spazio di tutte le successioni. Un caso importante è dato dagli spazi lp, solitamente denotati con , cioè gli spazi delle successioni tali che: Essi infatti risultano essere spazi di Banach per . Due sottocasi importanti del precedente sono lo spazio delle successioni limitate e lo spazio delle successioni , che è uno spazio di Hilbert. Un sottospazio vettoriale di è lo spazio c delle successioni convergenti, formato da tutti gli tali che esiste. Si tratta di uno spazio chiuso rispetto alla norma , ed è pertanto uno spazio di Banach. Lo spazio c0 delle successioni convergenti a zero è un sottospazio chiuso di c, e dunque anch'esso uno spazio di Banach. (it) 関数解析学および関連する数学の分野における数列空間(すうれつくうかん、英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ℓp である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するLp空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。 (ja) Em matemática, os espaços , são espaços vetoriais normados cujos vetores são sequências de números pertencentes a um corpo onde ou . Espaços são exemplos de espaços vetoriais de dimensão infinita. (pt) |
dbo:wikiPageID | 1701075 (xsd:integer) |
dbo:wikiPageLength | 22817 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1104138736 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Product_topology dbr:Scalar_multiplication dbr:Boris_Tsirelson dbr:Bounded_sequence dbc:Sequences_and_series dbr:Beta-dual_space dbr:Vector_space dbr:LB-space dbr:Limit_of_a_sequence dbr:Null_sequence dbr:Complete_topological_vector_space dbr:Complex_numbers dbr:Continuous_function dbr:Mathematics dbr:Norm_(mathematics) dbr:Separable_space dbr:Fréchet_space dbr:Fréchet–Urysohn_space dbc:Sequence_spaces dbr:Orlicz_sequence_space dbr:Linear_mapping dbr:Locally_convex_topological_vector_space dbr:Lp_space dbr:Compact_operator dbr:Comparison_of_topologies dbr:Complete_metric_space dbr:Dense_set dbr:Embedding dbr:Function_space dbr:Functional_analysis dbr:Schauder_basis dbr:Banach_space dbr:Topological_vector_space dbr:Topology dbr:Weak_topology dbr:Hausdorff_space dbr:Linear_subspace dbr:Tsirelson_space dbr:Dual_space dbr:Euclidean_space dbr:FK-space dbr:Field_(mathematics) dbr:Finite_support dbr:Normable_space dbr:Parallelogram_law dbr:Cauchy_sequence dbr:Direct_limit dbr:Double_dual dbr:Pointwise_convergence dbr:Quotient_space_(linear_algebra) dbr:Hilbert_space dbr:Isomorphic dbr:Ba_space dbr:Counting_measure dbr:Abuse_of_notation dbc:Functional_analysis dbr:Supremum_norm dbr:Coherent_topology dbr:Weak_convergence_(Hilbert_space) dbr:C_space dbr:Final_topology dbr:Hölder's_inequality dbr:Hölder_conjugate dbr:Inner_product dbr:Metric_space dbr:Metrizable_topological_vector_space dbr:Bs_space dbr:Natural_number dbr:Natural_numbers dbr:Net_(mathematics) dbr:Real_number dbr:Reflexive_space dbr:Sequence dbr:Sequence_(mathematics) dbr:Sequence_space dbr:Sequential_space dbr:Series_(mathematics) dbr:Euclidean_topology dbr:Image_(mathematics) dbr:Subspace_topology dbr:Polynomially_reflexive_space dbr:Schur's_property dbr:Subset dbr:Strong_topology dbr:Pointwise_addition dbr:Quotient_topology dbr:Convergent_sequence dbr:Infinite_sequence dbr:Componentwise_operation dbr:Strictly_singular |
dbp:mathStatement | Let be a Fréchet space over Then the following are equivalent: admits no continuous norm . contains a vector subspace TVS-isomorphic to . contains a complemented vector subspace TVS-isomorphic to . (en) |
dbp:name | Theorem (en) |
dbp:wikiPageUsesTemplate | dbt:Banach_spaces dbt:! dbt:' dbt:About dbt:Anchor dbt:Authority_control dbt:Citation dbt:Em dbt:Harv dbt:Harvtxt dbt:I_sup dbt:Math dbt:Reflist dbt:See_also dbt:Sfn dbt:Short_description dbt:Use_American_English dbt:Visible_anchor dbt:Functional_analysis dbt:Jarchow_Locally_Convex_Spaces dbt:Math_theorem dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels |
dct:subject | dbc:Sequences_and_series dbc:Sequence_spaces dbc:Functional_analysis |
gold:hypernym | dbr:Space |
rdf:type | owl:Thing yago:WikicatSequenceSpaces yago:WikicatSequencesAndSeries yago:Abstraction100002137 yago:Arrangement107938773 yago:Attribute100024264 yago:Group100031264 yago:Ordering108456993 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:Sequence108459252 yago:Series108457976 yago:Space100028651 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment | Ein Folgenraum ist ein in der Mathematik betrachteter Vektorraum, dessen Elemente Zahlenfolgen sind.Viele in der Funktionalanalysis auftretende Vektorräume sind Folgenräume oder können durch solche repräsentiert werden.Zu den Beispielen zählen u. a. die wichtigen Räume wie aller beschränkten Folgen oder aller gegen 0 konvergenten Folgen.Die Folgenräume bieten vielfältige Möglichkeiten zur Konstruktion von Beispielen und können daher auch als eine Spielwiese für Funktionalanalytiker betrachtet werden. (de) En mathématiques, l'espace ℓp est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. (fr) 関数解析学および関連する数学の分野における数列空間(すうれつくうかん、英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ℓp である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するLp空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。 (ja) Em matemática, os espaços , são espaços vetoriais normados cujos vetores são sequências de números pertencentes a um corpo onde ou . Espaços são exemplos de espaços vetoriais de dimensão infinita. (pt) In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. (en) In matematica, in particolare in analisi funzionale, lo spazio delle successioni è uno spazio funzionale formato da tutte le successioni reali o complesse. Si tratta dell'insieme delle funzioni definite sull'insieme dei numeri naturali a valori in o . Definendo una somma, detta puntuale: e un prodotto per scalari: lo spazio delle successioni viene dotato della struttura di spazio vettoriale. Solitamente, vengono studiati appropriati sottospazi dello spazio di tutte le successioni. Un caso importante è dato dagli spazi lp, solitamente denotati con , cioè gli spazi delle successioni tali che: (it) |
rdfs:label | Folgenraum (de) Espace de suites ℓp (fr) Spazio delle successioni (it) 数列空間 (ja) Sequence space (en) Espaço lp (pt) |
rdfs:seeAlso | dbr:Lp_space dbr:C_space dbr:Sup>_space |
owl:sameAs | freebase:Sequence space yago-res:Sequence space http://d-nb.info/gnd/4165249-6 wikidata:Sequence space dbpedia-de:Sequence space dbpedia-fr:Sequence space dbpedia-it:Sequence space dbpedia-ja:Sequence space dbpedia-pt:Sequence space https://global.dbpedia.org/id/2gS1Y |
prov:wasDerivedFrom | wikipedia-en:Sequence_space?oldid=1104138736&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Sequence_space |
is dbo:wikiPageRedirects of | dbr:C0_space dbr:Convergent_sequences dbr:ℓp dbr:ℓp_space dbr:ℓᵖ dbr:ℓᵖ_space dbr:ℓₚ dbr:ℓₚ_space dbr:ℓ∞ dbr:C₀_space dbr:Sequence_space_(mathematics) dbr:Little-lp_space dbr:Real_valued_sequences dbr:Sequence_spaces dbr:Space_of_all_real_sequences dbr:Space_of_bounded_sequences dbr:Space_of_complex_valued_sequences dbr:Space_of_convergent_sequences dbr:Space_of_finite_real_sequences dbr:Space_of_finite_sequences dbr:Space_of_null_sequences dbr:Space_of_real_sequences dbr:Space_of_real_valued_sequences dbr:Space_of_sequences dbr:Space_of_vanishing_sequences |
is dbo:wikiPageWikiLink of | dbr:Schuette–Nesbitt_formula dbr:C0_space dbr:Convergent_sequences dbr:Bergman_space dbr:Bounded_function dbr:Approximation_property dbr:Beta-dual_space dbr:Riesz–Thorin_theorem dbr:Cuntz_algebra dbr:ℓp dbr:ℓp_space dbr:ℓᵖ dbr:ℓᵖ_space dbr:ℓₚ dbr:ℓₚ_space dbr:ℓ∞ dbr:James'_space dbr:List_of_real_analysis_topics dbr:Commutator_subspace dbr:Operator_(mathematics) dbr:Operator_norm dbr:Edward_Trifonov dbr:Functional_correlation dbr:Georg_Cantor dbr:Bounded_operator dbr:Constant-recursive_sequence dbr:Strictly_singular_operator dbr:Orlicz_sequence_space dbr:Calkin_correspondence dbr:Fréchet_algebra dbr:Function_space dbr:Functional_analysis dbr:Schauder_basis dbr:Space_(mathematics) dbr:Markushevich_basis dbr:Distortion_problem dbr:List_of_Banach_spaces dbr:Tsirelson_space dbr:Amenable_group dbr:C₀_space dbr:Dual_system dbr:FK-space dbr:Partially_ordered_set dbr:Directed_evolution dbr:Kadison–Singer_problem dbr:Hilbert_space dbr:Interpolation_space dbr:Augmented_sixth_chord dbr:L-infinity dbr:Toeplitz_algebra dbr:Trace_class dbr:BK-space dbr:Hölder's_inequality dbr:Reflexive_space dbr:Sequence dbr:Sequence_space dbr:Sequence_space_(mathematics) dbr:L_(disambiguation) dbr:Lorentz_space dbr:Pisot–Vijayaraghavan_number dbr:Schur's_property dbr:Little-lp_space dbr:Sequence_space_(evolution) dbr:P-recursive_equation dbr:Peter_Orno dbr:Sequence_transformation dbr:Tannery's_theorem dbr:Square-summable dbr:Real_valued_sequences dbr:Sequence_spaces dbr:Space_of_all_real_sequences dbr:Space_of_bounded_sequences dbr:Space_of_complex_valued_sequences dbr:Space_of_convergent_sequences dbr:Space_of_finite_real_sequences dbr:Space_of_finite_sequences dbr:Space_of_null_sequences dbr:Space_of_real_sequences dbr:Space_of_real_valued_sequences dbr:Space_of_sequences dbr:Space_of_vanishing_sequences |
is foaf:primaryTopic of | wikipedia-en:Sequence_space |