Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans (original) (raw)

References

  1. Knable, M.B. & Weinberger, D.R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).
    Article CAS Google Scholar
  2. Koob, G.F., Sanna, P.P. & Bloom, F.E. Neuroscience of addiction. Neuron 21, 467–476 (1998).
    Article CAS Google Scholar
  3. Lang, A.E. & Lozano, A.M. Parkinson's disease. First of two parts. N. Engl. J. Med. 339, 1044–1053 (1998).
    Article CAS Google Scholar
  4. Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. & Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).
    Article CAS Google Scholar
  5. Gong, W., Neill, D.B., Lynn, M. & Justice, J.B., Jr. Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 93, 1349–1358 (1999).
    Article CAS Google Scholar
  6. McNamara, F.N. et al. Congenic D1A Dopamine receptor mutants: ethologically based resolution of behavioral topology indicates genetic background as a determinant of knockout phenotype. Neuropharmacology 28, 86–99 (2003).
    CAS Google Scholar
  7. Kelly, M.A. et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470–3479 (1998).
    Article CAS Google Scholar
  8. Plaznik, A., Stefanski, R. & Kostowski, W. Interaction between accumbens D1 and D2 receptors regulating rat locomotor activity. Psychopharmacology (Berl.) 99, 558–562 (1989).
    Article CAS Google Scholar
  9. Aizman, O. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230 (2000).
    Article CAS Google Scholar
  10. Kimura, K., White, B.H. & Sidhu, A. Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins. Evidence that D-1 dopamine receptors can couple to both Gs and Go . J. Biol. Chem. 270, 14672–14678 (1995).
    Article CAS Google Scholar
  11. Corvol, J.C., Studler, J.M., Schonn, J.S., Girault, J.A. & Herve, D. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 76, 1585–1588 (2001).
    Article CAS Google Scholar
  12. Liu, Y.F., Jakobs, K.H., Rasenick, M.M. & Albert, P.R. G protein specificity in receptor-effector coupling. Analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J. Biol. Chem. 269, 13880–13886 (1994).
    CAS PubMed Google Scholar
  13. Senogles, S.E. The D2 dopamine receptor isoforms signal through distinct Giα proteins to inhibit adenylyl cyclase. A study with site-directed mutant Giα proteins. J. Biol. Chem. 269, 23120–23127 (1994).
    CAS PubMed Google Scholar
  14. Sawin, E.R., Ranganathan, R. & Horvitz, H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619–631 (2000).
    Article CAS Google Scholar
  15. Wintle, R.F. & Van Tol, H.H. Dopamine signaling in _Caenorhabditis elegans_—potential for parkinsonism research. Parkinsonism Relat. Disord. 7, 177–183 (2001).
    Article Google Scholar
  16. Nass, R. & Blakely, R.D. The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu. Rev. Pharmacol. Toxicol. 43, 521–544 (2003).
    Article CAS Google Scholar
  17. Suo, S., Sasagawa, N. & Ishiura, S. Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci. Lett. 319, 13–16 (2002).
    Article CAS Google Scholar
  18. Suo, S., Sasagawa, N. & Ishiura, S. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J. Neurochem. 86, 869–878 (2003).
    Article CAS Google Scholar
  19. Lints, R. & Emmons, S.W. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFβ family signaling pathway and a Hox gene. Development 126, 5819–5831 (1999).
    CAS PubMed Google Scholar
  20. Sanyal, S. et al. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 23, 473–482 (2004).
    Article CAS Google Scholar
  21. Schafer, W.R. & Kenyon, C.J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375, 73–78 (1995).
    Article CAS Google Scholar
  22. Lewis, J.A., Wu, C.-H., Levine, J.H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).
    Article CAS Google Scholar
  23. Zheng, Y., Brockie, P.J., Mellem, J.E., Madsen, D.M. & Maricq, A.V. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24, 347–361 (1999).
    Article CAS Google Scholar
  24. Nass, R., Hall, D.H. & Miller, D.M., III. & Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 3264–3269 (2002).
    Article CAS Google Scholar
  25. Tsalik, E.L. et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 263, 81–102 (2003).
    Article CAS Google Scholar
  26. White, J.G., Southgate, E., Thompson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).
    Article CAS Google Scholar
  27. Hallam, S., Singer, E., Waring, D. & Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127, 4239–4252 (2000).
    CAS PubMed Google Scholar
  28. Eastman, C., Horvitz, H.R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).
    Article CAS Google Scholar
  29. Lochrie, M.A., Mendel, J.E., Sternberg, P.W. & Simon, M.I. Homologous and unique G protein α subunits in the nematode Caenorhabditis elegans. Cell Regul. 2, 135–154 (1991).
    Article CAS Google Scholar
  30. Mendel, J.E. et al. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267, 1652–1655 (1995).
    Article CAS Google Scholar
  31. Ségalat, L., Elkes, D.A. & Kaplan, J.M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267, 1648–1651 (1995).
    Article Google Scholar
  32. Nurrish, S., Ségalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Gαo decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).
    Article CAS Google Scholar
  33. Hajdu-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R. & Sternberg, P.W. Antagonism between Goα and Gqα in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goα signaling and regulates Gqα activity. Genes Dev. 13, 1780–1793 (1999).
    Article CAS Google Scholar
  34. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).
    CAS PubMed PubMed Central Google Scholar
  35. Chase, D.L., Patikoglou, G.A. & Koelle, M.R. Two RGS proteins that inhibit Gαo and Gαq signaling in C. elegans neurons require a Gβ5-like subunit for function. Curr. Biol. 11, 222–231 (2001).
    Article CAS Google Scholar
  36. Robatzek, M., Niacaris, T., Steger, K., Avery, L. & Thomas, J.H. eat-11 encodes GPB-2, a Gβ5 ortholog that interacts with Goα and Gqα to regulate C. elegans behavior. Curr. Biol. 11, 288–293 (2001).
    Article CAS Google Scholar
  37. van der Linden, A.M., Simmer, F., Cuppen, E. & Plasterk, R.H.A. The G-protein β-subunit GPB-2 in Caenorhabditis elegans regulates the Goα-Gqα signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. Genetics 158, 221–235 (2001).
    CAS PubMed PubMed Central Google Scholar
  38. Robatzek, M. & Thomas, J.H. Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a Go/Gq signaling network. Genetics 156, 1069–1082 (2000).
    CAS PubMed PubMed Central Google Scholar
  39. Brundage, L. et al. Mutations in a C. elegans Gqα gene disrupt movement, egg laying, and viability. Neuron 16, 999–1009 (1996).
    Article CAS Google Scholar
  40. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).
    Article CAS Google Scholar
  41. Miller, K.G., Emerson, M.D. & Rand, J.B. Goα and diacylglycerol kinase negatively regulate the Gqα pathway in C. elegans. Neuron 24, 323–333 (1999).
    Article CAS Google Scholar
  42. Yung, K.K.L. et al. Immunocytochemical localization of D1 and D2 receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730 (1995).
    Article CAS Google Scholar
  43. Caillé, I., Dumartin, B. & Bloch, B. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res. 730, 17–31 (1996).
    Article Google Scholar
  44. Gonon, F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17, 5972–5978 (1997).
    Article CAS Google Scholar
  45. Lackner, M.R., Nurrish, S.J. & Kaplan, J.M. Facilitation of synaptic transmission by EGL-30 Gqα and EGL-8 PLCβ: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335–346 (1999).
    Article CAS Google Scholar
  46. Jiang, M., Spicher, K., Boulay, G., Wang, Y. & Birnbaumer, L. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc. Natl. Acad. Sci. USA 298, 3577–3582 (2001).
    Article Google Scholar
  47. Wang, H.Y., Undie, A.S. & Friedman, E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol. Pharmacol. 48, 988–994 (1995).
    CAS PubMed Google Scholar
  48. Girault, J.A., Spampinato, U., Glowinski, J. & Besson, M.J. In vivo release of [3H]γ-aminobutyric acid in the rat neostriatum-II. Opposing effects of D1 and D2 dopamine receptor stimulation in the dorsal caudate putamen. Neuroscience 19, 1109–1117 (1986).
    Article CAS Google Scholar
  49. Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T. & Maruyama, Y. Regulation of dopamine D1 and D2 receptors on striatal acetylcholine release in rats. Brain Res. Bull. 43, 107–115 (1997).
    Article CAS Google Scholar
  50. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).
    Article CAS Google Scholar

Download references