The role of autophagy in cancer development and response to therapy (original) (raw)
Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science290, 1717–1721 (2000). Comprehensive review of autophagic processes. ArticleCASPubMedPubMed Central Google Scholar
Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell6, 463–477 (2004). Comprehensive review of autophagy in eukaryotic development. ArticleCASPubMed Google Scholar
Meijer, A. J. & Codogno, P. Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell Biol.36, 2445–2462 (2004). Comprehensive review of the autophagic process in mammalian cells. ArticleCASPubMed Google Scholar
Larsen, K. E. & Sulzer, D. Autophagy in neurons: a review. Histol. Histopathol.17, 897–908 (2002). CASPubMed Google Scholar
Nishino, I. Autophagic vacuolar myopathies. Curr. Neurol. Neurosci. Rep.3, 64–69 (2003). ArticlePubMed Google Scholar
Ogier-Denis, E. & Codogno, P. Autophagy: a barrier or an adaptive response to cancer. Biochim. Biophys. Acta1603, 113–128 (2003). CASPubMed Google Scholar
Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene23, 2891–2906 (2004). Reference 7, together with reference 6, provide comprehensive reviews of autophagy in cancer. ArticleCASPubMed Google Scholar
Gunn, J. M., Clark, M. G., Knowles, S. E., Hopgood, M. F. & Ballard, F. J. Reduced rates of proteolysis in transformed cells. Nature266, 58–60 (1977). ArticleCASPubMed Google Scholar
Kisen, G. O. et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis14, 2501–2505 (1993). ArticleCASPubMed Google Scholar
Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nature Rev. Microbiol.2, 301–314 (2004). ArticleCAS Google Scholar
Otsuka, H. & Moskowitz, M. Differences in the rates of protein degradation in untransformed and transformed cell lines. Exp. Cell Res.112, 127–35 (1978). ArticleCASPubMed Google Scholar
Schwarze, P. E. & Seglen, P. O. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp. Cell Res.157, 15–28 (1985). ArticleCASPubMed Google Scholar
Lee, H. K., Jones, R. T., Myers, R. A. & Marzella, L. Regulation of protein degradation in normal and transformed human bronchial epithelial cells in culture. Arch. Biochem. Biophys.296, 271–278 (1992). ArticleCASPubMed Google Scholar
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402, 672–676 (1999). First demonstration of the relationship between autophagy-associated BECN1 and tumorigenicity in breast and other cancers. ArticleCASPubMed Google Scholar
Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel BCL-2-interacting protein. J. Virol.72, 8586–96 (1998). ArticleCASPubMedPubMed Central Google Scholar
Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest.112, 1809–1820 (2003). First evidence of tumour development because of a deficiency of BECN1. ArticleCASPubMedPubMed Central Google Scholar
Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA100, 15077–15082 (2003). Reference 17, together with reference 16, provide the first demonstrations of the role of BECN1 as a tumour suppressor. ArticleCASPubMedPubMed Central Google Scholar
Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell4, 422–424 (2003). ArticleCASPubMed Google Scholar
Ogier-Denis, E., Houri, J. J., Bauvy, C. & Codogno, P. Guanine nucleotide exchange on heterotrimeric GI3 protein controls autophagic sequestration in HT-29 cells. J. Biol. Chem.271, 28593–28600 (1996). ArticleCASPubMed Google Scholar
Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res.61, 3443–3449 (2001). CASPubMed Google Scholar
Proikas-Cezanne, T. et al. WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene23, 9314–9325 (2004). ArticleCASPubMed Google Scholar
Susan, P. P. & Dunn, W. A. Jr. Starvation-induced lysosomal degradation of aldolase B requires glutamine 111 in a signal sequence for chaperone-mediated transport. J. Cell. Physiol.187, 48–58 (2001). ArticleCASPubMed Google Scholar
Ito, H., Daido, S., Kanzawa, T., Kondo, S. & Kondo, Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int. J. Oncol.26, 1401–1410 (2005). CASPubMed Google Scholar
Furuta, S., Hidaka, E., Ogata, A., Yokota, S. & Kamata, T. RAS is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene23, 3898–3904 (2004). ArticleCASPubMed Google Scholar
Izuishi, K., Kato, K., Ogura, T., Kinoshita, T. & Esumi, H. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res.60, 6201–6207 (2000). CASPubMed Google Scholar
Clarke, P. G. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol (Berl).181, 195–213 (1990). Renews interest in the role of autophagy during cell death. ArticleCASPubMed Google Scholar
Bursch, W. et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis17, 1595–1607 (1996). ArticleCASPubMed Google Scholar
Scarlatti, F. et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of Beclin 1. J. Biol. Chem.279, 18384–18391 (2004). ArticleCASPubMed Google Scholar
Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ.11, 448–457 (2004). First investigation to find that inhibition of autophagy at different stages causes distinct outcomes. ArticleCASPubMed Google Scholar
Paglin, S. et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res.61, 439–444 (2001). First investigation to show the feasibility of treating cancer cells by autophagy inhibition. CASPubMed Google Scholar
Yao, K. C. et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J. Neurosurg.98, 378–384 (2003). ArticleCASPubMed Google Scholar
Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA, 101, 18030–18035 (2004). ArticleCASPubMedPubMed Central Google Scholar
Komata, T. et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J. Neurooncol.68, 101–111 (2004). ArticlePubMed Google Scholar
Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., and Germano, I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res.63, 2103–2108 (2003). Provides evidence that bafilomycin A1increases the antitumour effect of arsenic trioxide by inhibiting autophagy. CASPubMed Google Scholar
Kanzawa, T. et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene24, 980–991 (2005). ArticleCASPubMed Google Scholar
Opipari, A. W. Jr. et al. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res.64, 696–703 (2004). ArticleCASPubMed Google Scholar
Ellington, A. A., Berhow, M. & Singletary, K. W. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis26, 159–167 (2005). ArticleCASPubMed Google Scholar
Takeuchi, H. et al. Augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-phosphate kinase/protein kinase B inhibitors. Cancer Res.65, 3336–3346 (2005). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science306, 990–995 (2004). Reviews a role of autophagy in health and disease. ArticleCASPubMedPubMed Central Google Scholar
Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell103, 253–262 (2000). Reviews the function of TOR and mTOR as central regulators for cell growth. ArticleCASPubMed Google Scholar
Gingras, A. C., Raught, B. & Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev.15, 807–826 (2001). Review shows that mTOR is involved in the regulation of translation initiation. ArticleCASPubMed Google Scholar
Wang, C. W. & Klionsky, D. J. The molecular mechanism of autophagy. Mol. Med.3–4, 65–76 (2003). Article Google Scholar
Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem.275, 992–998 (2000). ArticleCASPubMed Google Scholar
Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem.276, 35243–35246 (2001). ArticleCASPubMed Google Scholar
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet.15, 356–362 (1997). ArticleCASPubMed Google Scholar
Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin–phosphatidylinositol 3-kinase complex functions at the _trans_-Golgi network. EMBO Rep.2, 330–335 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brown, W. J., DeWald, D. B., Emr, S. D., Plutner, H. & Balch, W. E. Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J. Cell Biol.130, 781–796 (1995). ArticleCASPubMed Google Scholar
Inbal, B., Bialik, S., Sabanay, I., Shani, G. & Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol.157, 455–468 (2002). Demonstrates the induction of autophagic cell death by DAPK and DRP1. ArticleCASPubMedPubMed Central Google Scholar
Saeki, K. et al. BCL-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ.7, 1263–1269 (2000). ArticleCASPubMed Google Scholar
Vande Velde, C. et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol.20, 5454–5468 (2000). Demonstrates the involvement of BNIP3 in autophagic cell death. ArticleCASPubMedPubMed Central Google Scholar
Yanagisawa, H., Miyashita, T., Nakano, Y. & Yamamoto, D. HSPIN1, a transmembrane protein interacting with BCL-2/BCL-XL, induces a caspase-independent autophagic cell death. Cell Death Differ., 10, 798–807 (2003). ArticleCASPubMed Google Scholar
Ogier-Denis, E., Pattingre, S., El Benna, J. & Codogno, P. ERK1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J. Biol. Chem.275, 39090–39095 (2000). ArticleCASPubMed Google Scholar
Inbal, B. et al. DAP kinase links the control of apoptosis to metastasis. Nature390, 180–184 (1997). ArticleCASPubMed Google Scholar
Daido, S. et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res.64, 4286–4293 (2004). ArticleCASPubMed Google Scholar
Shimizu, S. et al. Role of BCL-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol.6, 1221–1228 (2004). ArticleCASPubMed Google Scholar
Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell120, 237–248 (2005). ArticleCASPubMed Google Scholar
Su, B. & Karin, M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opin. Immunol.8, 402–411 (1996). ArticleCASPubMed Google Scholar
Alva, A. S., Gultekin, S. H. & Baehrecke, E. H. Autophagy in human tumors: cell survival or death? Cell Death Differ.11, 1046–1048 (2004). ArticleCASPubMed Google Scholar
Bursch, W., Ellinger, A., Gerner, C., Frohwein, U. & Schulte-Hermann, R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann. NY Acad. Sci.926, 1–12 (2000). ArticleCASPubMed Google Scholar
Bursch, W. et al. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J. Cell Sci.113, 1189–1198 (2000). ArticleCASPubMed Google Scholar
Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ.8, 569–581 (2001). ArticleCASPubMed Google Scholar
Yu, L. et al. Regulation of an ATG7–Beclin 1 program of autophagic cell death by caspase-8. Science304, 1500–1502 (2004). Demonstrates the direct interaction between autophagy and apoptosis. ArticleCASPubMed Google Scholar
Bauvy, C., Gane, P., Arico, S., Codogno, P. & Ogier-Denis, E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp. Cell Res.268, 139–149 (2001). ArticleCASPubMed Google Scholar
Pelicano, H. et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem.278, 37832–37839 (2003). ArticleCASPubMed Google Scholar
Piacentini, M., Evangelisti, C., Mastroberardino, P. G., Nardacci, R. & Kroemer, G. Does prothymosin-α act as molecular switch between apoptosis and autophagy? Cell Death Differ.10, 937–939 (2003). ArticleCASPubMed Google Scholar
Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct.23, 33–42 (1998). ArticleCASPubMed Google Scholar
Cheney, I. W. et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer. Cancer Res.58, 2331–2334 (1998). CASPubMed Google Scholar
Davies, M. A. et al. Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin. Cancer Res.8, 1904–1914 (2002). CASPubMed Google Scholar
Eshleman, J. S. et al. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res.62, 7291–7297 (2002). CASPubMed Google Scholar
Mondesire, W. H. et al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res.10, 7031–7042 (2004). ArticleCASPubMed Google Scholar
Stephan, S. et al. Effect of rapamycin alone and in combination with antiangiogenesis therapy in an orthotopic model of human pancreatic cancer. Clin. Cancer Res.10, 6993–7000 (2004). ArticleCASPubMed Google Scholar
Kim, J. & Klionsky, D. J. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Ann. Rev. Biochem.69, 303–342 (2000). ArticleCASPubMed Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast APG8P, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mizushima, N. et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J. Cell Biol.152, 657–668 (2001). First demonstration of thede novosynthesis of the autophagosome membrane. ArticleCASPubMedPubMed Central Google Scholar
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell15, 1101–1111 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dunn, W. A. Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J. Cell Biol.110, 1923–1933 (1990). ArticlePubMed Google Scholar
Yokota, S., Himeno, M., Roth, J., Brada, D. & Kato, K. Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)phthalate treatment. II. Immunocytochemical analysis of early and late autophagosomes. Eur. J. Cell Biol.62, 372–383 (1993). CASPubMed Google Scholar
Stromhaug, P. E., Berg, T. O., Fengsrud, M. & Seglen, P. O. Purification and characterization of autophagosomes from rat hepatocytes. Biochem. J.335, 217–224 (1998). ArticleCASPubMedPubMed Central Google Scholar
Noda, T., Suzuki, K. & Ohsumi, Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol.12, 231–25 (2002). ArticleCASPubMed Google Scholar
Reunanen, H., Marttinen, M. & Hirsimaki, P. Effects of griseofulvin and nocodazole on the accumulation of autophagic vacuoles in Ehrlich ascites tumor cells. Exp. Mol. Pathol.48, 97–102 (1988). ArticleCASPubMed Google Scholar
Punnonen, E. L. & Reunanen, H. Effects of vinblastine, leucine, and histidine, and 3-methyladenine on autophagy in Ehrlich ascites cells. Exp. Mol. Pathol.52, 87–97 (1990). ArticleCASPubMed Google Scholar